
Converting Hyperion Queries to Power BI | 1

Converting Hyperion Queries to Power BI
This guide will cover the process of obtaining SQL text from Hyperion BQY files, editing and updating that query text to

recreate calculated columns and other items which are not exported, and then using that modified SQL query to create a

new Power BI data set. This document will not cover the process of joining data sets in a Power BI data model or show

you how to create visualizations to present your data.

The goals of this document are to 1) provide instructions for individual units to preserve critical UWM queries; 2)

introduce the basic functionality and core concepts of Power BI; 3) share additional training and educational resources

which will allow campus authors to explore more advanced Power BI concepts.

This document assumes that you will be connecting to the UWM production data warehouse (dwprod) and that you

have already installed the 64-bit Power BI Desktop tool through the Software Center client on your campus desktop. A

couple of important notes before beginning the process:

¶ You will likely not be able to connect to the UWM data warehouse if you use the Power BI Desktop install file

from the Microsoft website. The Software Center package includes additional Windows components which are

required for Power BI operation. If you do not see this software available in the Software Center, please submit

a support ticket requesting the Power BI Desktop tool.

¶ The procedure shown here will only replicate the tables, fields, join relationships, filters, and sorts from a single

Query section of your Hyperion BQY file:

The process below works by exporting a single Hyperion query and importing it to Power BI, where you
execute that query to recreate the same data set. It is most appropriate for preserving and migrating
simpler queries with only a few Query sections. Additionally, any business logic after this initial query
(i.e., filters, sort orders, or calculated columns added in your Results section or subsequent tables) will
need to be recreated manually in your SQL statement or (ideally) in Power BI.

If you have a file with multiple Query sections, you will need to repeat the process in this guide for
each Query section in your BQY file to generate separate data sets which can be joined in the Power BI
data model. This data modeling is beyond the scope of this guide, but some web-based resources and
training materials are provided at the end of this document.

For more complicated multi-section Hyperion queries, I would strongly recommend taking some
time to analyze and understand your query needs before simply using this process to recreate each
Query section in Power BI (we'll cover some examples of this type of analysis later in this guide).

https://uwm.edu/technology/request-support/

Converting Hyperion Queries to Power BI | 2

Generating Your SQL
Open your BQY file in Hyperion, and then go to the View menu and select Query Log.

You should see an empty window appear at the bottom of your Hyperion application:

Process your query like you normally would, and when it's done, notice that the query log window is no longer empty:

Click anywhere on the new text to select it, and then open a text editing program like Notepad and paste in your SQL

query. (You can use Word, but it may helpfully include "smart quotes" which can introduce errors into your queries):

The application above is called Sublime Text (it's free!) – one of my favorite features of this program is the color-coding

for the different elements of SQL text (provided the file is saved with a .sql file extension). It also allows searching and

string replacement with regular expressions which can simplify query creation and make things easier to read.

I would also recommend pasting your query text into a tool like SQL Format (https://sqlformat.org/) to add line breaks

and indentations which make it more readable (especially if you're new to SQL!) – this is a good way to break down the

language into recognizable parts.

Editing Your SQL
This step is where you could take your SQL query and add missing calculated columns, filters, or sorts. If you're generally

familiar with SQL or don't have any computed columns and just want the instructions for integrating your query into a

new tool, you can skip to the Core Concepts of Power BI section.

This section is intended to explain the basics of SQL, to help authors understand what their queries are
doing and how they can be modified using SQL, and finally to provide some resources for curious
authors to learn more about the SQL language.

If you are unfamiliar with both SQL and Power BI, I would highly recommend taking this opportunity to
perform your query modifications in Power BI instead, as it provides a more forgiving and user-friendly
development environment, and minimizes the total number of new concepts you will have to learn.

https://www.windowscentral.com/change-smart-quotes-straight-quotes-microsoft-office-word-outlook-powerpoint
https://sqlformat.org/

Converting Hyperion Queries to Power BI | 3

A Brief Introduction to SQL
Here's our query, after some help from SQL Format and color-coding to help explain the various sections:

SELECT DISTINCT AL1.PERS_CAMPUS_ID,

 AL1.PERS_PRIMARY_FIRST_NAME,

 AL1.PERS_PRIMARY_MIDDLE_NAME,

 AL1.PERS_PRIMARY_LAST_NAME,

 AL5.CLASS_SUBJECT_CD,

 AL5.CLASS_CATALOG_NBR,

 AL5.CLASS_SECTION,

 AL5.CLASS_DESCR,

 AL5.CLASS_CRS_TOPIC_ID_LDESC

FROM V8DW.VU_CC_PERSONAL_DIM AL1,

 V8DW.VU_REC_STUDENT_TERM_DIM AL2,

 V8DW.VU_REC_STUDENT_TERM_FACT AL3,

 V8DW.VU_REC_ENROLLMENT_FACT AL4,

 V8DW.VU_REC_CLASS_DIM AL5

WHERE (AL2.CTERM_EMPLID=AL1.PERS_EMPLID

 AND AL2.CTERM_SID=AL3.CTERM_SID

 AND AL2.CTERM_SID=AL4.CTERM_SID

 AND AL4.CLASS_SID=AL5.CLASS_SID)

 AND ((AL1.PERS_DT_OF_DEATH IS NULL

 AND AL2.CTERM_TERM_SDESC='Sprng 2020'

 AND AL2.CTERM_WITHDRAW_CD='NWD'

 AND (AL3.SCTERM_UNITS_AUDIT>0

 OR (NOT AL2.CTERM_ACAD_LOAD_CODE='N'))

 AND AL5.CLASS_SUBJECT_CD='FILM'

 AND AL4.ENRL_STATUS_SDESC='Enrol led'

 AND AL4.ENRL_STATUS_REASON_SDESC='Enrolled'))

¶ All your SQL queries will start with a SELECT clause – if you've chosen to "return unique rows" in your query,

you'll also have the word DISTINCT, as above.

¶ The orange section indicates the fields which are "selected" in your query, in the format of TABLE ALIAS.FIELD

(you'll see the ALx "aliases" defined in the green section)

¶ The green section has the FROM clause, specifying the tables included in your query and their aliases, in the

format of SCHEMA.TABLE ALIAS

¶ The yellow section has the WHERE clause, with the table join conditions (also using the table aliases)

¶ The blue section of the WHERE clause has the filters from your query, including any nested logic (as you can see

in the load code and audit condition) and again, uses the table aliases.

There are different SQL variants used by different database vendors (e.g., Microsoft uses SQL Server,
MySQL and MariaDB are open-source alternatives). While the basic syntax is similar, the functions and
other advanced features can vary (think British vs. American English). Our data warehouse databases
and the functions below use PLSQL, the Oracle standard SQL language – when Googling or otherwise
learning about SQL techniques, make sure you specify the PLSQL variety.

You may see PLSQL examples with a different join syntax than the one shown above with the
conditions in the WHERE clause. Both methods perform identically. For a comparison of both methods
with side-by-side examples, check out this page: ANSI ISO SQL Support In Oracle 9i

Modifying Your SQL Query
For the purpose of introducing SQL a bit more, I'll show you how you would update your SQL statement to create three

very basic types of computed columns from my query (again, with the caveat that I would strongly recommend

performing these operations in Power BI instead!):

https://oracle-base.com/articles/9i/ansi-iso-sql-support#Joins

Converting Hyperion Queries to Power BI | 4

¶ Activation Date is a simple date column with the current date

¶ Expiration Date is a constant string with the end date of the term

¶ Class Info is a field which conditionally combines different class elements into one field

Field Name Hyperion Formula SQL

ACTIVATION DATE Sysdate() SYSDATE as TODAY

EXPIRATION DATE '05/31/20' '05/31/20' as EXPIRATION_DATE

CLASS INFO if (Class_Crs_Topic_Id_Ldesc != null)
{Class_Subject_Cd + Class_Catalog_Nbr
+ '-' + Class_Section + ' '+ Class_Descr +
' (' + Class_Crs_Topic_Id_Ldesc + ')' }
else {Class_Subject_Cd +
Class_Catalog_Nbr + '-' + Class_Section
+ ' '+ Class_Descr }

CASE
WHEN Class_Crs_Topic_Id_Ldesc is not null

THEN Class_Subject_Cd || Class_Catalog_Nbr || '-' ||
Class_Section || ' ' || Class_Descr || ' (' ||
Class_Crs_Topic_Id_Ldesc || ')'

ELSE Class_Subject_Cd || Class_Catalog_Nbr || '-' ||
Class_Section || ' ' || Class_Descr
END as CLASS_INFO

I want to draw your attention to two things – first, the syntax for the first couple of columns is nearly identical. Even in

the third, while it uses a CASE statement for testing a condition and a pipe operator for combining strings, is also fairly

straightforward. Second, I've removed all spaces from column names – this isn't necessary, as you can wrap column

names in double-quotes to preserve spaces, but it's easier to maintain consistency between warehouse columns and

other computed items.

So, with this new SQL, we can add our Hyperion computed columns back to the query:

You'll notice that the basic SYSDATE formula above brings our date back in a different format than in our string date

column. To fix this, we could use the TO_CHAR() function to change the formula slightly and convert our system date to

a character column to match. Changing our column to:

TO_CHAR(SYSDATE, 'MM/DD/YY') as TODAY

Results in the same date format in both columns:

https://www.techonthenet.com/oracle/functions/case.php
https://www.techonthenet.com/oracle/functions/concat2.php

Converting Hyperion Queries to Power BI | 5

Note that I am just using the example above to illustrate how you can easily modify SQL statements to
meet your needs – I do not suggest converting dates to strings to make the formatting look nicer.
If anything, you should be converting the many string date fields in our warehouse back to actual date
fields to take advantage of the powerful time reporting capabilities in Power BI.

Common SQL Functions
Here's a list of some common PLSQL functions:

SQL Function Description

CASE Replaces the if/else conditional logic from Hyperion

LISTAGG Combines text string values from multiple rows into one row

DENSE_RANK Creates a running rank/order between columns over a specific group

DECODE Identical to the DECODE syntax used in Hyperion

MAX Used to return the max value of a column over a certain group

SUM Used to return the sum of two (or more) fields or the sum of multiple rows over a given group

NVL Identical to the NVL syntax used in Hyperion

And a list of other helpful links, from basic to more complex:

¶ Google – honestly, the best resource for figuring out a) the proper terminology for what you're trying to do; b)

whether or not that thing is possible; and c) if it's possible, how to do it (and again, remember to use PLSQL as a

keyword to confine results to only Oracle SQL solutions)

¶ A basic introduction to SQL syntax and concepts: https://www.w3schools.com/sql/

¶ A list of common Oracle SQL functions: https://www.techonthenet.com/oracle/functions/

¶ The Oracle DevGym for basic classes and "workouts" on specific topics and Oracle Live SQL sites with examples

of advanced functionality (these two sites require a free Oracle.com account)

¶ A Gentle Introduction to Common SQL Window Functions

¶ Oracle's SQL for Analysis and Reporting documentation

Core Power BI Concepts
Before we delve into the import process, I want to introduce the two Power BI query languages – M and DAX – and

some core concepts to help you understand the full potential of the tool and add business value to your data sets.

Before that, there are three important points that I want to mention.

First, there is a ton of overlap in the capabilities of SQL, DAX, and M, and most of the operations shown here can be

done in any one of them. The goal of this document is to provide a foundation and resources for learning each language,

present relative strengths and weaknesses, and give some recommendations for when to use each tool in the toolbox.

Second, there is an enormous amount of depth to Power BI and this document only scratches the surface, largely by

simplifying concepts for ease of introduction. Wherever possible, I've included links to more in-depth articles on

important concepts to offer opportunities for you to learn more about the complexities of Power BI – please use them!

Third, I want to emphasize that this guide is intended to show the process of converting a single Query from a simple

Hyperion BQY file. If you have a more complicated BQY file with things like multiple Query sections, results from other

data sources (i.e., Access, CSVs), or many calculated items or tables that further refine results, you may not benefit from

the process shown here. Instead, you may want to spend time analyzing your query and rebuilding it in Power BI using a

more traditional query development process. Some scenarios for analysis and benefits to developing directly in Power BI

are provided in the Four Steps to Analyzing and Learning (Power BI) section near the end of this document.

https://www.techonthenet.com/oracle/functions/case.php
https://www.techonthenet.com/oracle/functions/listagg.php
https://www.techonthenet.com/oracle/functions/dense_rank.php
https://www.techonthenet.com/oracle/functions/decode.php
https://www.techonthenet.com/oracle/functions/max.php
https://www.techonthenet.com/oracle/functions/sum.php
https://www.techonthenet.com/oracle/functions/nvl.php
https://www.w3schools.com/sql/
https://www.techonthenet.com/oracle/functions/
https://devgym.oracle.com/
https://livesql.oracle.com/
https://www.vertabelo.com/blog/oracle-sql-analytical-functions-for-beginners-a-gentle-introduction-to-common-sql-window-functions/
https://docs.oracle.com/cd/E11882_01/server.112/e25554/analysis.htm#DWHSG021
https://docs.microsoft.com/en-us/power-bi/desktop-getting-started

Converting Hyperion Queries to Power BI | 6

Power BI Languages: M and DAX
Power Query (also commonly called M) is a language that allows you to transform and modify elements of an individual

data set (like your Hyperion SQL) before you import it into the Power BI data model. DAX allows you to build calculated

columns and measures from multiple data sets after they've been imported into the data model and integrate user

selections into context-aware data elements.

What do I mean by context-aware? Let's say I created a Hyperion data set showing the total Fall 2019 credits for all

subject areas and showed credit totals by college – by creating a column with a sum of credits with a 'break' column of

Academic Group. Pretty easy, but what if the user wanted to filter that table to just credits in MATH courses? In

Hyperion, I would have needed to predict that need and define a second column which summed credits with a break

column of the Subject. And what if the user wanted to filter further to just MATH lecture courses? I would have had to

create a third column with a break column of Subject AND Course Component, and so on.

As the complexity of the user's questions and filter selections increases, our ability to predict their query needs and

answer their business questions is greatly reduced with Hyperion (and even to some extent SQL – apart from "window

functions" which allow you to aggregate/reference data from other rows in the same data set). Over time, this reduction

just results in more query requests as users consume data, and inevitably return with more informed questions which

require more custom calculations. In Power BI, a single "total credits" measure written in DAX would return accurate

credits totals on the fly for all three of the requests above using the context of the user's current filter selections to

perform the appropriate calculations.

One helpful blog post uses the analogy that M is the "sous chef" of Power BI – chopping up vegetables and making

sauces to improve the flavor of the final product. DAX is the head chef who knows what's appetizing, plans out the meal,

and ultimately combines those ingredients into tasty meals for your customers. To extend this metaphor a bit, SQL might

be the food delivery service – choosing and delivering the raw ingredients for DAX and M to use.

Data Sets, Data Models, and DAX Measures
As I've explained earlier, this guide covers the process of creating a single Power BI data set from a single Hyperion

Query section. If you need to join the results from multiple Hyperion Query sections, you'll need to repeat this process

and then create a Power BI data model to create relationships (joins) between these different data sets. Keep in mind

that your data sets can also be from non-BQY query data sources (such as Excel/CSV files or SharePoint lists) which

Power BI can import.

The Power BI data model is a complicated topic that is beyond the scope of this guide (see the Power BI Resources

section at the end of this document for some related training videos and documentation) but I want to take a moment

to explain these core concepts in Hyperion terms. Think of each Power BI data set as the final "local results" table you

build from each Query section, with SQL and M being the languages that you would use to select your tables/fields and

joins and transform the results of your query by doing things like filtering out unnecessary records and creating

calculated columns. The Power BI data model is like your final Hyperion Query section, where you would join all your

local results (data sets) into one collection of data to answer business questions.

The major difference here is that the Power BI data model is not a query, but more like an OBIEE subject area where you

define relationships to facilitate future reports and dashboards. Along with these relationships, the data model can also

contain measures (written in DAX) which are based on values from multiple rows from one or more data sets (like our

total credits example earlier). Measures are different from calculated columns (which can also be written in DAX), which

are simple calculations performed on a single row (think of something like "% of Capacity" for a course, which divides

enrollment by capacity for each course).

For more information about the differences between Power BI columns and measures along with specific examples,

check out SQLBI's Calculated Columns and Measures in DAX article.

https://www.sqlgene.com/2018/04/03/m-vs-dax-chopping-broccoli-vs-planning-a-menu/
https://www.sqlbi.com/articles/calculated-columns-and-measures-in-dax/

Converting Hyperion Queries to Power BI | 7

Creating a Power BI Data Set from SQL
In this section, we'll cover the process of importing your SQL to Power BI Desktop and creating a data set, how you can

use DAX and the Power BI GUI to create the same missing columns from before.

Setup and Importing Hyperion SQL
To begin the process, open Power BI Desktop. If this is your first time, you may need to login with your Office 365

credentials by clicking the Sign in text at the bottom of the popup window:

Then, enter your UWM email address in the window that appears. After doing so, you may need to enter your ePanther

password to open the application. Then, click the Get Data link in the upper left of the Power BI Desktop splash screen:

In the Get Data popup window, click to select the Oracle database option, and then click the Connect button.

On the next page, enter in dwprod as your Server – the server name on this screen will use the server name and other

connection information from the production data warehouse entry in your tnsnames.ora file.

Next, click the triangle to the left of Advanced options to expand that section. In the SQL statement box, paste in the

SQL statement from your Hyperion query:

Converting Hyperion Queries to Power BI | 8

The Data Connectivity mode option in this window allows you to import a copy of all data from the table right away, or

to directly query the table, showing a subset of live data from the table. Both methods have strengths and weaknesses

depending on the size of your data set and the calculations you'll be performing – Microsoft has a great write-up about

Using Direct Query in Power BI Desktop that may prove helpful in your selection.

For queries using our data warehouse, the Import option will likely be your best bet for a few reasons:
1) warehouse data will not change throughout the day; 2) relatively speaking for Power BI queries, the
amount of data is likely to be small; 3) importing data allows Power BI to use its "high performance
query engine" (rather than querying the database every time you add a computed item or change a
filter) so you can develop your data sets faster. The import process might take more time, but you will
save time as you transform your data, and you can always refresh your data later to capture changes.

When you've selected the option for you, click the OK button to enter your credentials for the dwprod data source.

In the credentials window that appears, click the Database tab on the left side, and then enter your Oracle username

and password for the data warehouse, and then click the Connect button.

Note that you'll only need to provide the credentials for each data source once; after that, they are securely stored and

will not need to be entered for subsequent connections to each connection (to view and modify your saved connection

information, go to the File menu, select Options and settings, and click Data source settings).

As an aside, after pasting in my exact SQL statement from above, I received the following error:

https://docs.microsoft.com/en-us/power-bi/desktop-use-directquery

Converting Hyperion Queries to Power BI | 9

This is caused by the semicolon at the end of the SQL statement copied from Hyperion. If we click the Edit button here

and remove the semicolon, our SQL statement executes and a preview of our data is shown, along with the options to

Load or Transform Data:

If you click the Load button, the data from your query will be added to the data model as a completed data set and you

can use DAX expressions to add new columns and transform your data. If you click the Transform Data button, you can

use M expressions to filter and transform your data set before it's added to the data model.

It's important to understand that the process described in this guide is not representative of typical
Power BI query development. Because we are using a pre-defined query to recreate an existing data
set, less data transformation is necessary at this stage. For example, we might want to apply filters
from the Results section of our Hyperion query or create new calculated columns, but most of the
transformation work (selecting fields and applying filters) has already been done in Hyperion.

If you were creating a new Power BI query from scratch, you would likely begin by selecting one or
more warehouse tables and then use the Transform Data option here. Using M (Power Query), you
would eliminate unnecessary columns and add filters before adding those tables as data sets in your
data model. After adding multiple data sets, you would define join relationships between them and
use DAX to create additional calculated columns and measures using both data sets and/or user filters.

So, if you wanted to create a dashboard which would identify current students in a given academic
plan, you would add VU_REC_ACAD_STRUCTURE_DIM and VU_UWM_ACAD_PLAN_TBL to your data
model, transforming the ACAD_STRUCTURE data to only include "Active" students. In your data model,
you would define that the tables should be joined on the value of ACAD_PLAN.

If you wanted to create a new Active Plan(s) column that would include all (active) plans for an Emplid,
regardless of the user's filter selections, you would create that column in this Transform Data step.
If, however, you wanted the Active Plan(s) column to respond to filter selections (e.g., if the user
selected the School of Business, you would only return their active Business plans), then you would
create that column in DAX after importing the data set to your data model.

Converting Hyperion Queries to Power BI | 10

For the purposes of this document, we will select the Import option here and move forward with demonstrating the

process of creating columns in DAX, but please read this M or DAX: That is the Question article for more details about

the differences between the languages and the best place to use each.

After a brief delay while your data is imported, you can view the query data in a

"data sheet" format by clicking the Data icon in the upper left (shown to the right)

to bring up all the rows from your query:

Creating Calculated Columns in DAX
As I mentioned earlier, you can also recreate any of your missing fields in Power BI after pasting in the original SQL

statement directly from Hyperion. This section of the document shows how you can do that using Microsoft's DAX

language (used in Power BI and Excel's Power Pivot). DAX is powerful, but also relatively easy to implement—Microsoft

has some very good DAX documentation available and you can typically find Google search results to handle most

common questions (not to mention the similarity to Excel formula syntax and helpful auto-complete functionality).

As we showed before with SQL, the syntax for these three columns in DAX is close to Hyperion:

Field Name Hyperion Formula DAX

ACTIVATION DATE Sysdate() TODAY()

EXPIRATION DATE '05/31/20' "05/31/20"

CLASS INFO if (Class_Crs_Topic_Id_Ldesc != null)
{Class_Subject_Cd + Class_Catalog_Nbr
+ '-' + Class_Section + ' '+ Class_Descr +
' (' + Class_Crs_Topic_Id_Ldesc + ')' }
else {Class_Subject_Cd +
Class_Catalog_Nbr + '-' + Class_Section
+ ' '+ Class_Descr }

IF(ISBLANK(Query1[CLASS_CRS_TOPIC_ID_LDESC]),
Query1[CLASS_SUBJECT_CD] &
Query1[CLASS_CATALOG_NBR] & "-" &
Query1[CLASS_SECTION] & " " &
Query1[CLASS_DESCR], Query1[CLASS_SUBJECT_CD]
& Query1[CLASS_CATALOG_NBR] & "-" &
Query1[CLASS_SECTION] & " " &
Query1[CLASS_DESCR] & " (" &
Query1[CLASS_CRS_TOPIC_ID_LDESC] & ")")

As before with the SQL current data column, our new column has more information than we want:

https://radacad.com/m-or-dax-that-is-the-question
https://docs.microsoft.com/en-us/dax/

Converting Hyperion Queries to Power BI | 11

To change this, we can click the column heading to select the entire column, and then go to the Modeling tab on the top

ribbon interface. Then, in the Formatting section, click on the Format dropdown and select your new date format:

And see that the format has updated:

This method is preferable to the SQL method of adding the date and changing formatting shown earlier, since the

column type has not been changed from a date and this information can still be used for more advanced date-based

reports and dashboards.

Analysis Tips and Building Queries in Power BI
Now that we've spent 10 pages explaining how you can migrate your existing Hyperion queries into Power BI, let's look

at some scenarios when you may want to take the longer route and rebuild, and some tips for analyzing your queries

and learning how to rebuild them in Power BI.

Things to Consider
The method shown above is a great way to capture the logic and query parameters from simple Hyperion BQY files, but

here are a few things you should consider before starting up Power BI and rolling up your sleeves:

¶ If you are unfamiliar with SQL and Power BI, you should probably rebuild in Power BI to minimize the

number of new concepts and tools you will need to learn.

¶ If most of your logic and calculated columns are created in the Results section (or later!) in your BQY, you

will be rebuilding most of your query in Power BI after importing the SQL anyway. Why not get practice with

the Power BI interface while you still have a BQY file to test that you are getting the right results?

Converting Hyperion Queries to Power BI | 12

¶ If your query is something you are updating or running regularly with different filters, you should probably

rebuild in Power BI. The Power BI interface is more forgiving than SQL, and the Power BI Query editor allows

you to easily edit and "step through" your data changes by adding/removing and changing the order of the

different transformations (column creations, sorts, filters, etc.) to manipulate your data.

¶ If you don't remember the purpose of half of the sections and/or your Hyperion query looks like this:

You should probably take this opportunity to rebuild your query and make sure it's still doing what you think

it's doing—and start learning how to create queries from scratch using Power BI!

Four Steps to Analyzing and Learning (Power BI)
New tools will almost always provide more advanced functionality and techniques which enable different methods of

problem-solving, and Power BI is no different. The best way to learn Power BI will be to figure out the core parts of your

solution and the required steps, and then to use that understanding along with some internet sleuthing to figure out the

best "Power BI way" to solve a problem, rather than simply applying the best "Hyperion translated to Power BI" method.

To help with that effort, I'm going to provide four steps I take for analyzing, understanding, and building technology

solutions – they're applicable for Power BI queries, too!

1. Gather the artifacts. Bring in everything – BQY files, any external data sources (e.g., Excel files, Access

databases), process documentation, and anything you know about the data request (past deliverables will also

be helpful for testing the validity of your new queries). Familiarize yourself with the request from the starting

point – at the least, this will be a good refresher and helps with the following step.

2. Unpack the actions. Figure out how to answer the business question that's being posed. If you have a BQY file,

what are the steps you took to get the solution? Try to break these steps down into the basic actions (fetching

fields, applying filters, sorting data, creating calculated items) and order. Then, go even deeper and try to

unpack the logic behind each action, and the purpose it serves. For example, if your column returns the

maximum term code for each student, why do you need this calculation? How is it helpful in getting the data

you need? Keep in mind that the clearer you understand the steps in your process, the easier it will be to search

for and identify new techniques and methods for completing those steps in your new query.

3. Refine the terminology. This is the most important, and most time-consuming, step of the process. With your

newfound understanding of the core parts of your query, it's time for some internet sleuthing. So, if I wanted to

find out how to recreate my max term per student query, I might start by Googling power query find max value

in column:

https://docs.microsoft.com/en-us/power-bi/desktop-query-overview

Converting Hyperion Queries to Power BI | 13

Some basic reading of the results shows that we're on the right track, but that this method will find us the max

value for the entire table, and not just the smaller group of rows for each Emplid. So, let's refine our query a bit

to include the Table.max function and the group keyword. Let's try power query find table.max in group:

Which links us to the helpful How to Group By Maximum Value using Table.Max article (which references

another helpful article about grouping in Power BI to create aggregated data sets).

This is a super simple example of the theme for this step – combine your new understanding of the current

action with simple keywords to get close to the right answer. Then, read your results and see if you've found a

solution – if not, refine your search to add any new terminology that seems to be closer to what you need.

As you perform this step more often, you will also come to recognize certain sites which come up more

frequently and tend to have higher-quality results and explanations which work for you. Trust these sites and

use them to identify other techniques which might be even better than the ones you're using now.

https://excelgorilla.com/power-bi/power-query/reach-underlying-rows-using-table-max/

Converting Hyperion Queries to Power BI | 14

4. Practice the techniques. I'm going to share a secret with those of you who are still reading: you can't learn how

to build Power BI queries by reading blog posts or watching videos. The only way to learn the Power BI query

languages is to apply the techniques you find to actual business needs.

Sometimes you might find a solution in the previous step that doesn't do what you expected or solve your

current problem. However, you can probably learn something about the tool or the data from this misstep or

find a way to share your experience and knowledge with the rest of the reporting community and help someone

else who's struggling with the same situation.

The bottom line is that your journey to learning Power BI is going to be an iterative process that requires a lot of

experimentation, analysis, and community-building – in the same ways that the campus learned Hyperion!

Power BI Resources

There is a wealth of information about how to build on the basic SQL import process shown in this document with

additional columns, joining between different sets of "local results," and building visualizations based on that data.

Here's a list of some of these resources:

If you're a video learner…

¶ Microsoft Power BI Guided Learning (all of these are great, but pay special attention to Model data in Power BI,

Use visuals in Power BI, and Introduction to DAX to build on the Hyperion conversion shown in this guide)

¶ SQLBI's free Introduction to Data Modeling for Power BI and Introducing DAX courses are another excellent way

to build on the basic concepts in this guide.

¶ For a ground-up introduction to Power BI functionality and features, check out one of the many LinkedIn Power

BI courses (formerly Lynda.com, UWM has a free subscription)

¶ If you'd prefer a project- and assignment-focused introduction to the tool, check out the Analyzing and

Visualizing Data with Power BI course from EdX (no charge, but requires a free account)

If you'd prefer to read…

¶ Microsoft's Power BI documentation covers everything from the basics to data modeling and creating

dashboards with your data set: https://docs.microsoft.com/en-us/power-bi/

¶ Microsoft's DAX Reference: https://docs.microsoft.com/en-us/dax/

¶ A comparison of SQL and DAX, and basic DAX querying: https://www.wiseowl.co.uk/blog/s2480/dax-query.htm

¶ DAX variables: https://docs.microsoft.com/en-us/power-bi/guidance/dax-variables

¶ Microsoft's guide to Transforming Data with M: https://docs.microsoft.com/en-us/powerquery-m/
¶ SQLBI (https://www.sqlbi.com/) is an excellent resource for beginner-friendly training videos, but they also have

regular blog posts about new Power BI features and deep dives into the more powerful functionality of the tool.

¶ The DAX Guide: https://dax.guide/ -- the benefit of this resource over the Microsoft reference above is that it

provides links to SQLBI posts and articles which cover the DAX function you're investigating.

https://docs.microsoft.com/en-us/power-bi/guided-learning/
https://docs.microsoft.com/en-us/learn/modules/model-data-power-bi/
https://docs.microsoft.com/en-us/learn/modules/visuals-in-power-bi/
https://docs.microsoft.com/en-us/power-bi/guided-learning/introductiontodax#step-1
https://www.sqlbi.com/p/introduction-to-data-modeling-for-power-bi-video-course/
https://www.sqlbi.com/p/introducing-dax-video-course/
https://www.linkedin.com/learning/search?keywords=Microsoft+Power+BI
https://www.linkedin.com/learning/search?keywords=Microsoft+Power+BI
file:///C:/Users/jpebert/Desktop/•%09https:/www.edx.org/course/analyzing-and-visualizing-data-with-power-bi-2
file:///C:/Users/jpebert/Desktop/•%09https:/www.edx.org/course/analyzing-and-visualizing-data-with-power-bi-2
https://docs.microsoft.com/en-us/power-bi/
https://docs.microsoft.com/en-us/dax/
https://www.wiseowl.co.uk/blog/s2480/dax-query.htm
https://docs.microsoft.com/en-us/power-bi/guidance/dax-variables
https://docs.microsoft.com/en-us/powerquery-m/
https://www.sqlbi.com/
https://dax.guide/

	Generating Your SQL
	Editing Your SQL
	A Brief Introduction to SQL
	Modifying Your SQL Query
	Common SQL Functions

	Core Power BI Concepts
	Power BI Languages: M and DAX
	Data Sets, Data Models, and DAX Measures

	Creating a Power BI Data Set from SQL
	Setup and Importing Hyperion SQL
	Creating Calculated Columns in DAX

	Analysis Tips and Building Queries in Power BI
	Things to Consider
	Four Steps to Analyzing and Learning (Power BI)

	Power BI Resources

