Fast, accurate calibration of Advanced LIGO data is an essential part of gravitational-wave astronomy, necessary for prompt electromagnetic follow-up of gravitational-wave events and reliable estimation of source parameters.

I will discuss methods used in both low and high latency to produce the calibrated strain signal $h(t)$. I will highlight recent improvements that have been made to improve the calibration process during and after the second observing run. These include the application of frequency-dependent corrections to the calibration using adaptive filters, reduction in calibration latency, and the subtraction of excess noise from $h(t)$ in low latency.