Micro-credentialing Urban Math and Science Teachers’ Action Research to Improve Student Learning

Barbara L. Bales
University of Wisconsin System Administration
University of Wisconsin-Milwaukee

Jose Perez
Reagan IB High School

Andy Goetsch
Milwaukee High School of the Arts
Milwaukee Public Schools

8th Annual STEM Forum & Expo, hosted by NSTA
July 24-26, 2019; San Francisco, CA

This project is funded by a grant from the National Science Foundation (awards 1540840 and 1557397) to the University of Wisconsin Milwaukee. The content in this paper does not necessarily reflect the views of the NSF.
Context

• The CCSSM and NGSS standards frameworks represent significant shifts in what students are expected to learn and recast demands on teachers’ content knowledge, pedagogical content knowledge, and knowledge for teaching (Goertz, Floden & O’Day, 1995; Sykes & Plastrik, 1993; and Ball, Thames, & Phelps, 2008).

• General public believes “anyone can teach if they know a particular subject and that it is not really necessary to first learn about curriculum, classroom management and instruction” (Strauss, 2017).

• Legislation allows teachers to be hired with no formal training (e.g., Arizona, Louisiana, and Wisconsin) and the use of industry-sponsored, ‘teacher-proof’ curriculum (Wertz, 2017; Gunter, Hall & Apple, 2017).

• This context is particularly problematic in large, high poverty, urban school districts where accountability frameworks require documented gains in student learning and teacher professional development is limited and inconsistent (Avalos, 2011; Yoon, Duncan, Lee, Scarloss, & Shapley, 2007).
Research Question: How might action research and micro-credentialing in the knowledge domains for teaching document development of a teacher’s professional practice?

Three theoretical lenses:

• Teacher learning as a situated, distributed, and social activity (Borko, 2004; Lave & Wenger, 1991; Lieberman & Miller, 2008) that stimulates an ever-evolving professional practice (Bales & Saffold, 2011; Dall’Alba & Sandburg 2006, Bell & Gilbert, 1996).

• Action research, as a professional learning action strategy, enhances teachers’ knowledge, improves educational practice, and contributes to the knowledge base (Loucks-Horsley, Stiles, Mundry, Love, & Hewson, 2010).

• A system of micro-credentials motivates participation (Gibson, Ostashefski, Flintoff, Grant & Knight, 2013), allows participants to make individualized decisions about what to learn, provides opportunities to customize content specific to their needs and local work (Kinshuk, Graf and Yang, 2010), and makes professional knowledge visible to the public.
Model Design and Participants

Professional Development Model: Action research-based micro-credentials to develop expertise in the knowledge domains for teaching (Ball, Thames, & Phelps, 2008; Windschitl, Thompson, Braaten, & Stroupe, 2012).

• **Common Structure of Micro-credentials:**
 • An opening activity orients teachers to the construct and links to a specific mathematics or science task.
 • Discussion of teachers’ pedagogical experience with the topic.
 • Reading of selected research-based texts.
 • Development of a research question
 • Design and implementation of action research project.
 • Collection and analysis of student artifacts.
 • Response(s) to research question.
 • Reflections on teacher and student learning and next steps.

Participants: 24 high school mathematics and science teachers with master’s degrees primarily in Curriculum and Instruction.
CONCEPT MAPPERS EXHIBIT GREATER CONTENT APPREHENSION

Andrew P. Goetsch, JD in collaboration with UW-Milwaukee, the Noyce Foundation, Milwaukee Public Schools, and the National Science Foundation
PRODUCED IN THE COURSE OF THE MILWAUKEE MASTER TEACHER PARTNERSHIP (MMTP)

CONCEPTUAL CONTEXT
Problem: Without connecting adjacent topics to the “bigger picture,” students will often fail to reach higher level understanding of content and will achieve reduced development of metacognitive skills.

According to the National Research Council, experts differ from novices in that experts notice features and patterns of information... organized in ways that reflect deep understanding. (Brandt, Bren, and Caudill 2000). More important, experts have efficiently coded and organized this information into well-connected schemas that help experts interpret new information and notice features and meaningful patterns... (Pellegrino, Chudersky, and Glaser 2003). As a student gains mastery of concept maps, they develop an understanding of the relationships and connections among elements of a concept, ultimately making incremental gains in moving from novice to expert-level learners. Furthermore, students enhance metacognitive abilities by learning to construct their own concept maps... As the learners physically draw the connection between two subtopics, they are reinforcing that connection mentally.

methodology
High School biology students were asked to use the BrainPOP!-internet-based platform in the study of Genetics, Heredity, and Genetic Mutations units. The students:
1. Received introductory content materials and literacy building in the units.
2. Pre-tested on the introductory materials.
3. Received advanced activities (laboeratory and higher demand supplemental activities are provided, to include the BrainPOP! Make-A-Map concept mapping activity)
4. Post-test was administered, along with a survey question as to the student opinion on the usefulness of the concept mapping task.
5. Data is analyzed to determine Pre-Test to Post-Test performance change in the segregated pools of those students who made the maps (Mappers) and those who did not (Non-Mappers).

DATA
Student Population: 16 students completed both the Genetic Mutations Pre-Test and Post-Test, and Survey. All of these students are included in the data analysis.

Survey Results - “Making concept maps is...”

- NonMappers vs Mappers:
 - **A: 64%**
 - **B: 27%**
 - **D: 9%**
 - **C: 0%**

Data Analysis

<table>
<thead>
<tr>
<th></th>
<th>Post-Test</th>
<th>Pre-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Data</td>
<td></td>
<td>11.50</td>
</tr>
<tr>
<td>Mean</td>
<td>4.86</td>
<td>4.18</td>
</tr>
<tr>
<td>SD</td>
<td>4.18</td>
<td>4.97</td>
</tr>
<tr>
<td>SEM</td>
<td>1.58</td>
<td>2.46</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Unpaired t-test results:

P value and statistical significance:
The two-tailed P value equals 0.0470
By conventional criteria, this difference is considered to be statistically significant.

Confidence interval:
The mean of a core change Non Mappers minus core change Mappers equal 4.64
99% confidence interval of this difference: -13.18 to 2.88

FURTHER RESEARCH
The study could be replicated with other students, distinct content units, or alternate concept mapping software or devices. Additional research questions include:
- Can a different metacognitive activity produce a similar result?
- Is there accuralation to the quality of the concept map produced by a student and their change in assessment performance?
- Will students produce concept maps and enhance content apprehension without the aid of computer software?
- Can concept mapping enhance disciplinary literacy, particularly writing?

ACKNOWLEDGEMENTS
"BrainPOP" is a registered trademark of FWD Media Inc. d/b/a BrainPOP. "Make-A-Map" is a registered trademark of BrainPOP IP LLC. Images in this presentation taken from BrainPop platform for non-commercial, educational use.
Using the Modeling Cycle with 9th Grade Biology Students to Explain Population Cycles

Jose Perez

Research Question
How does the modeling cycle affect student ability to create a model that is logical and can be defended based on research of lemming populations?

Lesson Description
Groups of 3-4 students created and revised a concept map/model of the various organisms and environmental conditions that interact with a lemming population to understand why lemming populations cycle dramatically every 4 years.

NGSS Standards Address with DCI and Cross Cutting Concepts
LS2: Ecosystems: Interactions, Energy, and Dynamics
LS2.C: Ecosystem Dynamics, Functioning, and Resilience
HS-LS2-6. Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.

Methodology
• One heterogeneous group of 9th grade Biology students partook in the lesson.
• The lesson took place over six 90 minute periods.
 • Day 1: Students created preliminary models and hypotheses about the Norwegian Lemming population cycle.
 • Day 2: Students peer evaluated each others models after they explored the ideas of 1. Habitat/Niche/Limiting Factors 2. The organization of life on planet earth. 3. Energy flow through an ecosystem
 • Day 3: Students revised models and explored ideas of Population interactions and Nutrient cycling
 • Day 4: Student read and discussed various scholarly articles about lemming population cycles.
 • Day 5: Students created a final draft of their models.
 • Day 6: Students will finalize their final drafts of their models and answer various assessment questions about their models.

The Percentage (%) of Each Score Students Earned on Each Sub-Criteria

<table>
<thead>
<tr>
<th></th>
<th>Creating the Model</th>
<th>Evaluating and Using the Model</th>
<th>Percentage of Each Overall Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Advance</td>
<td>11</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>% Proficient</td>
<td>69</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>% Basic</td>
<td>14</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>% Minimal</td>
<td>6</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

Results & Analysis
Student models were varied and on average provided logical reasoning of lemming population cycles based on research. Examining written responses that evaluated the use of the model, over 68% of students provided on average proficient or advance responses. Student surveys suggest a vast majority of the class thought that the modeling activity was enjoyable and allowed them to apply their knowledge about ecosystems and population cycles as they dug deeper into the content.

Work Cited
Data Generation and Analysis

Data Generation
Survey responses, video observation of teachers teaching, year-end focus groups, and a document analysis of their action research projects.

Analysis of Data
• Identified essential features related to project goals and theoretical underpinnings.
• First cycle coding was deductive and structural (Saldana, 2016).
• Microanalysis of the language within each artifact.
• Second cycle coding noted any interrelationships and patterns among analyzed segments (Wolcott, 1994).

Three Themes Emerged then Resituated in Data
• How teachers understand the knowledge domains for teaching.
• How they make sense of and take up new learning in their professional practice.
• Tighter sequence of claims, evidence, and reasoning in action research projects.
F #1. Teachers built a personalized learning path into the knowledge domains for teaching.
Three Findings + New Instrument

F #2. The Importance of teacher voice in their learning

Self-selection of badges and the individualized nature of action research projects was essential in personalizing what each teacher wanted or needed to learn.
Three Findings + New Instrument

F. #3. Micro-credentialed action research is a mechanism to develop teachers’ practice.

Teachers honed their research questions and skills each time they took up a new micro-credential, which afforded a more focused look at teaching and learning in their classroom. Specifically, teachers

1. Recognized that classroom teaching and learning was a valid platform from which to base their inquiry and offered a legitimate source of data.

2. Built a shared conception of well-grounded action research.

3. Moved beyond overly broad and inappropriate causal constructions in their research design.
A New Instrument: CLADE
Chronicles of Learning And Development Episodes

Domains of Mathematical Knowledge for Teaching

- **SUBJECT MATTER KNOWLEDGE**
 - Common content knowledge (CCK)
 - Horizon content knowledge

- **PEDAGOGICAL CONTENT KNOWLEDGE**
 - Specialized content knowledge (SCK)
 - Knowledge of content and students (KCS)
 - Knowledge of content and teaching (KCT)
 - Knowledge of content and curriculum

(Ball et al., 2008, p. 403)
A New Instrument: CLADE
Chronicles of Learning And Development Episodes

Teachers used the CLADE to mark/chart/plan their learning.

They did this by:

1. Identifying each badge completed and three key concepts learned.

2. Providing an example of student learning that depicted explicit connections between teacher learning and classroom practice.

3. Linking the knowledge domain of each badge completed – what they learned – to the theoretical constructs of each domain, which provided a three-dimensional view of their efforts (i.e., how many domains and how many in each).

4. Reflecting on totality of their learning over the year, offer evidence of growth/changes in their classroom practice, generate goals and badges for following year.
Significance

2019 STEM for ALL Video
Want more information?

Visit the Milwaukee Master Teacher Partnership at:
https://uwm.edu/mmtp/