1. Let X be a random variable with pmf $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$, $k \in \{1, \ldots, n\}$, with $n \in \mathbb{N}$ and $p \in (0, 1)$.
 (a) Find the characteristic function (or moment generating function) of X.
 (b) Use (a) to find $E(X)$.

2. Let (X, Y) be a random vector with density
 \[
 f(x, y) = \frac{1}{2\pi}, \quad (x, y) \in R, \text{ with } R = \{(x, y) : |x| < 1, \ 0 < y < x^2\}.
 \]
 Prove that $U = Y/X^2$ has a Uniform$(0, 1)$ distribution.

3. Prove that a sequence of random variables that converges in probability is bounded in probability. (Note: $\{X_n\}_{n \geq 1}$ is bounded in probability if for every $\delta > 0$ there exists a $K_\delta > 0$ and a $N_\delta \in \mathbb{N}$ such that $P(|X_n| > K_\delta) < \delta$ for every $n \geq N_\delta$.)

4. Let X_1, \ldots, X_n be i.i.d. with pdf
 \[
 f(x; \theta) = \frac{\theta}{(1 + \theta x)^2}, \quad x \geq 0, \text{ with } \theta > 0.
 \]
 (a) Find the estimating equation of the maximum likelihood estimator $\hat{\theta}_n$ (i.e. the equation whose solution is $\hat{\theta}_n$).
 (b) Find the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n - \theta)$ (in particular, find the explicit form of the asymptotic variance).
 (c) Use (b) to derive an asymptotic confidence interval of level 95% for θ.

5. Let X_1, \ldots, X_n be i.i.d. with Uniform$(0, \theta)$ distribution. Find a complete sufficient statistic for θ, and prove it is sufficient and complete.

6. Let X_1, \ldots, X_n be i.i.d. with pdf $f(x; \theta) = \theta x^{\theta-1}$, $0 < x < 1$, with $\theta > 0$.
 (a) Show that $\{f(x; \theta) : \theta > 0\}$ is a family with monotone likelihood ratio.
 (b) Find the uniformly most powerful test of level α for the hypotheses $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$, where θ_0 is a fixed given number.