Masters Proficiency Exam in Statistics – August 2017

<u>Note</u>: There are six problems in this exam. Partial credit will be given for partial solutions but scoring will emphasize completely correct answers. You are guaranteed a passing score if you solve at least four problems. Show all work and justify all claims.

- 1. Let X be a random variable with pmf $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$, $k \in \{1, \dots, n\}$, with $n \in \mathbb{N}$ and $p \in (0, 1)$.
 - (a) Find the characteristic function (or moment generating function) of X.
 - (b) Use (a) to find E(X).
- 2. Let (X,Y) be a random vector with density

$$f(x,y) = \frac{1}{2x^2}, \ (x,y) \in R, \ \text{with} \ R = \{(x,y) : |x| < 1, \ 0 < y < x^2\}.$$

Prove that $U = Y/X^2$ has a Uniform (0,1) distribution.

- 3. Prove that a sequence of random variables that converges in probability is bounded in probability. (Note: $\{X_n\}_{n\geq 1}$ is bounded in probability if for every $\delta > 0$ there exists a $K_{\delta} > 0$ and a $N_{\delta} \in \mathbb{N}$ such that $P(|X_n| > K_{\delta}) < \delta$ for every $n \geq N_{\delta}$.)
- 4. Let X_1, \ldots, X_n be i.i.d. with pdf

$$f(x;\theta) = \frac{\theta}{(1+\theta x)^2}, \ x \ge 0, \text{ with } \theta > 0.$$

- (a) Find the estimating equation of the maximum likelihood estimator $\hat{\theta}_n$ (i.e. the equation whose solution is $\hat{\theta}_n$).
- (b) Find the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n \theta)$ (in particular, find the explicit form of the asymptotic variance).
- (c) Use (b) to derive an asymptotic confidence interval of level 95% for θ .
- 5. Let X_1, \ldots, X_n be i.i.d. with Uniform $(0, \theta)$ distribution. Find a complete sufficient statistic for θ , and *prove* it is sufficient and complete.
- 6. Let X_1, \ldots, X_n be i.i.d. with pdf $f(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1, with $\theta > 0$.
 - (a) Show that $\{f(x;\theta):\theta>0\}$ is a family with monotone likelihood ratio.
 - (b) Find the uniformly most powerful test of level α for the hypotheses $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$, where θ_0 is a fixed given number.