
Overview of R.H. Stockbridge’s Research

The vast majority of my research has been connected to the relation between stochastic control and
linear programming. Recent investigations have derived a tractable, nonlinear optimization problem from
the linear program. This work can be characterized as being foundational and applied, with some efforts at
approximation of these infinite-dimensional linear programs.

Foundational Research - Linear Programming
The foundational work began with my PhD dissertation, published in [2] and [3] in The Annals of Prob-

ability. We proved that long-term average stochastic control problems in which the control acts absolutely
continuously in time are equivalent to linear programs over the space of stationary distributions for the con-
trolled process. The process is characterized as a solution of a controlled martingale problem for its generator
A. [2] establishes the existence of a stationary solution corresponding to each measure µ that satisfies the
stationarity condition

∫
Af dµ = 0 for all f ∈ D(A), while [3] utilizes this existence result to establish the

equivalence. The proof merely shows existence of an adapted relaxed control without specifying its form.
Paper [11] significantly improved this equivalence in several ways. Most important is that to each sta-

tionary measure µ, a relaxed control of feedback type is identified as being given by the regular conditional
distribution η on the control space U given the state x of µ; that is, the relation between µ and η satis-
fies µ(dx × du) = η(x, du)µE(dx) with µE being the state marginal. In addition, the equivalence between
stochastic control problems and linear programming problems was extended (with this feedback control) so
that it applied to discounted, first-exit, and finite-horizon problems as well as to long-term average problems.
The key to this extension is to reformulate each of the problems as a long-term average problem for a process
that reinitializes at the time of exit, or at the final time or, treating the discount factor as an exponential
lifetime, at the time of death. Applying the existence result for long-term average problems and using a
change in measure then leads to the desired equivalence.

Papers [19], [20] and [29] further extend these foundational results. In [19], the processes are characterized
by a singular, controlled martingale problem which facilitates the modeling of singular behavior due to the
underlying structure or due to the control action. An important aspect of this is a correct relaxation of
the singular aspect of the model as a measure-valued random variable. The characterization of stationary
measures,

∫
Af dµ0 +

∫
Bf dµ1 = 0 for all f ∈ D, now includes two measures µ0 and µ1 with µ0 being the

stationary measure µ of [11] while µ1 captures the stationarity of the singular aspects of the process. This
paper proves the existence of a stationary solution of the martingale problem (with appropriate feedback
controls η0 and η1) corresponding to any pair (µ0, µ1) satisfying the stationarity condition. [20] extends the
equivalence between stochastic and linear programming formulations to optimal stopping problems and [29]
extends the linear programming equivalence to include processes having singular behavior but not singular
control actions.

The final steps for equivalence between singularly controlled processes and linear programs involve using
the long-term average existence result of [19] much as in [11]. The technical challenges imposed by the
singular control action are non-trivial. The paper [arXiv:1707.09209] proves the equivalence for long-term
average and discounted criteria. A second paper which addresses first exit, finite horizon, and optimal
stopping with control, both without and with discounting, is nearly complete. These two papers will be
submitted for publication as companion papers.

The paper [40] utilized the equivalence between the stochastic control and linear programming problems
to give very general sufficient closedness and compactness conditions on the martingale model that ensure
the existence of an optimal control in the class of strict controls. This single set of conditions applies to many
standard stochastic control models and seem to be the most general to-date. This condition is also adapted
to singular control problems in [arXiv:1707.09209] and its companion to prove the existence of optimal strict
absolutely continuous and singular control policies.

Foundational Research - Nonlinear Optimization
The papers [33], [37], [39], [47], [48] and [arXiv:1702.01041] (along with many conference papers since

2010) develop a new solution methodology based on the linear programming formulation for stochastic control
problems. With regard to long-term average singular control problems, using a particular function f such
that Af = −1 in the stationarity condition implies that

∫
Bf dµ1 = 1 for all feasible measures. Rewriting

the cost criterion solely in terms of µ1 then enables the infinite-dimensional problem to be reduced to a
tractable, finite-dimensional nonlinear optimization problem. We initially developed this solution method
for the optimal stopping of one-dimensional diffusions [33] in which the value function is constructed from the
solutions of the nonlinear problem. This nonlinear optimization approach applies to all of the main decision
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criteria by carefully choosing f for the characterizing stationarity conditions. The papers [37], [39] and [47]
apply this methodology to a variety of discounted stochastic control problems while the papers [48] and
[arXiv:1702.01041] consider long-term average inventory problems without utilizing a linear programming
formulation.

Approximation Research
Beginning with my PhD student’s dissertation [12], a strong current in my research has been to focus on

how to use the linear programming formulation to solve stochastic control problems. This effort necessarily
entails approximating the infinite-dimensional linear programs by finite-dimensional linear programs. [12]
gave conditions under which the values and the optimal controls for the approximating problems converge
to the corresponding value and an optimal control for the infinite-dimensional problem.

Papers [16], [17], [18] and [24] characterize processes on a bounded region by their moments and rewrite
the stationary condition on the measure µ as an infinite collection of conditions on their moments. In our first
foray using this approach, [16] examines a controlled process and shows how the tightness (or lack thereof)
of the constraints arising from a particular control give evidence of optimality (or not) of this control. We
use the linear programming equivalence to estimate the moments related to the exit time distribution, the
resolvent and the Laplace transform of uncontrolled processes in [17] and [18]. The novelty and importance
of this method was recognized by [17] being published in Operations Research. In [24], an extension of
the moment characterization to the simplex enabled this approach to analyze the moments related to the
stationary distribution for the Wright-Fisher diffusion in population genetics. The paper [25] establishes the
moment characterization for a general polytope and other bounded regions.

Typically, a finite difference scheme has been used to approximate solutions to stochastic control problems.
The papers [30] and [32] examine a finite element approach to the solution of the linear program formulation of
the problem and demonstrate much better accuracy than obtained from finite-difference schemes or dynamic
programming. A current PhD student is expanding on the work in [32] with excellent results.

Applied Research
The linear programming formulation for stochastic control problems has been applied in a variety of

settings. My early work [6] and [9] examined a new model for the wear of a machine in which the level of
wear was given by the running maximum of a controlled diffusion process. These were among the earliest, if
not the first, use of the running maximum in stochastic control theory. The paper [22] showed how to adapt
the linear programming formulation when the cost was determined by the local time of a diffusion, with an
application to the optimal control for an active shock absorber.

Employing the nonlinear optimization approach, [37] considered the optimal management of forests while
[42] solved a different harvesting problem in which the optimal harvesting strategy requires the relaxed
formulation of [19]. The paper [39] examined optimal production decisions.

Our most recent publications examine inventory management under both discounted [47] and long-
term average ([48] and [arXiv:1702.01041]) criteria. Each paper extends the optimality of (s, S) ordering
policies to general one-dimensional diffusion models. In particular, the submitted paper [arXiv:1702.01041]
significantly relaxes the assumptions on the model and the cost structure resulting in the most general set of
conditions under which optimality of an (s, S) policy can be proven for one-dimensional diffusion models. The
nonlinear optimization method gives the solution without applying either the method of vanishing discount
or the quasi-variational inequality. Surprisingly, weak convergence arguments are used without requiring the
approximating singular measures to converge.
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