## 231 Gateway 3 Practice Test - Graphs

No uses of Calculators; No Partial Credit. 30 minutes to finish test. More space will be provided on the actual test.

1. Consider the function $f(x)=3 x^{4}+2 x^{3}-3 x^{2}+2$
(a) ( 10 pts ) Find all of the critical numbers of $f$.
(b) (10 pts) Give the points $(x, f(x))$ of the absolute minimum and absolute maximum for $f$ on the interval $[0,1]$.
2. ( 10 pts ) Find the critical numbers where $f$ has a local maximum or minimum on the given domain and identify each point as a local maximum or local minimum. If there is no local maximum and no local minimum, explain (briefly) why.
$f(x)=x^{2}+\frac{3}{x}, 0<x<\infty$.
3. For the given derivative of a function $f, f^{\prime}(x)=(x+1)(x+2)$,
(a) (5 pts) What are the critical numbers of $f$ ?
(b) ( 5 pts ) On what intervals is $f$ increasing?
(c) ( 5 pts) On what intervals is $f$ decreasing?
(d) (5 pts) At what critical numbers, if any, does $f$ assume a local maximum?
(e) ( 5 pts ) At what critical numbers, if any, does $f$ assume a local minimum?
4. The graphs of the first and second derivative of a function $y=f(x)$ are shown.
(a) ( 3 pts ) On what intervals is $f$ increasing?
(b) ( 3 pts ) On what intervals is $f$ decreasing?
(c) ( 3 pts ) On what intervals is $f$ concave up?
(d) ( 3 pts ) On what intervals is $f$ concave down?
(e) $(8 \mathrm{pts})$ Add to the picture a sketch of the approximate graph of $f$, given that the graph passes through the point P .

5. (2 pts each) Let $f(x)$ be a function such that $f^{\prime \prime}$ is continuous. State whether $f$ has a Local Maximum, a Local Minimum, Neither, or if the data is inconclusive at each of the following values of $x$.

| $x$ | $f^{\prime}(x)$ | $f^{\prime \prime}(x)$ |  |
| :---: | :---: | :---: | :--- |
| 1 | 0 | 8 |  |
| 2 | 9 | 6 |  |
| 3 | 0 | -5 |  |
| 4 | 7 | 0 |  |
| 5 | 0 | 0 |  |

6. Use the following information to answer this problem:
$\lim _{x \rightarrow-1^{-}} f(x)=-\infty$
$\lim _{x \rightarrow-1^{+}} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=-1$
$\lim _{x \rightarrow \infty} f(x)=1$
$f^{\prime}(x)<0$ for $x \in(-\infty,-1) \cup(-1,2)$
$f^{\prime}(x)>0$ for $x \in(2, \infty)$
$f^{\prime \prime}(x)<0$ for $x \in(-\infty,-1) \cup(3, \infty)$
$f^{\prime \prime}(x)>0$ for $x \in(-1,3)$
(a) ( 6 pts ) Label all of the important $x$-values derived from the information provided above on the number line below. Then indicate the intervals along this line where $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are positive or negative.

$$
\begin{aligned}
& f^{\prime}(x) \\
& f^{\prime \prime}(x)
\end{aligned}
$$

(b) (9 pts) Sketch the graph of a function that satisfies all of the given conditions. No formulas are required but be sure to label all of the important values on the coordinate axes.

