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1. INTRODUCTION 

Motor vehicle accident reports are the most useful and valuable source for analyzing crashes and 

identifying factors that contribute to crashes. Most information from a crash is categorized as 

“structured” data in that it is provided by law enforcement agencies through crash report forms 

with appropriate data fields that are then stored in a database. However, law enforcement officers 

also provide a significant amount of detailed information in the crash narrative, which is 

presented in an unstructured text format. The narrative fields can be used to record additional 

information on specific circumstances, key factors (e.g., citations, additional witnesses, types of 

drugs and medication, hazardous materials spillage from trucks and buses, trailer and towed, 

school bus information) and other circumstances that could be leading to a crash but is not 

compiled through structured data fields. More importantly, the narrative provides detailed 

explanations to these contributing circumstances such as driver, vehicle or highway; and often 

times, specific crash location information. Unstructured data can’t be easily stored in a database. 

And even if it is stored, it has attributes that make it a difficult to edit, query and analyze, 

especially on the fly.  

However, structured data from crash reports doesn’t provide perfect information either. For 

example, incorrectly classifying a crash will lead to undercounting some types of crashes and 

overcounting others. Crashes might also be completely missing from structured data fields due 

to: restrictive reporting options in tabular forms (Blackman, Debnath, and Haworth 2020; 

Ullman and Scriba 2004; Wang et al. 1996); lack of understanding about the importance of the 

crashes, overloaded by work during crash reporting time (Graham and Migletz 1983); and 

misclassification of crashes (Wang et al., 1996,  Farmer, 2003). Furthermore, generally, a police 

officer makes certain judgments about a crash based on the severity of the crash and based on the 

driver. For example, a fatal crash is usually given the highest reporting priority, compared with 

property damage crashes, which usually receive a lower priority (Ye and Lord 2011). 

Furthermore, crashes with less severity or with no injuries are sometimes not even reported in 

structured data (Wang et al. 1996). Additionally, the probability of reporting an injury crash 

increases with the number of vehicles involved as well as the age of the injured (i.e., crashes with 

young children are reported 20-30% of the time, and crashes with persons over 60 are reported 

70% of the time) (Hauer and Hakkert 1988). Also, crashes involving younger or female drivers 

have a lower probability of being reported (Amoros, Martin, and Laumon 2006). Therefore, 

estimates based solely on structured data fields do not provide complete information for the 

safety analysis, meaning crash narratives are an important piece of the puzzle (Abay 2015). 

Manual review of crash narratives for causes and contributing factors, while immensely valuable, 

is labor-intensive for traffic safety engineers because the language varies by report. The results 

are also somewhat inconsistent because they are subject to the reviewers’ experience and 

judgement. Therefore, a more predictable, consistent, and efficient method of automatic 

information extraction, such as text mining, is necessary. A crash narrative can be converted to a 

numeric vector suitable for machine learning, a process often referred to as feature extraction. 
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Text mining results can be used to assess the quality of crash flags (e.g., work zone, secondary 

crash) and identify vehicle actions in a crash by the sequence of verb phases in a narrative. 

Moreover, thousands of crash reports can be reviewed in a matter of minutes using these 

techniques, according to a recent study.  

The goal of this study is to develop intelligent algorithms (i.e., machine learning (ML) natural 

language processing (NPL), text mining, statistical modeling) that facilitate the rapid and 

efficient retrieval of critical data from police crash narratives.  

This goal will be achieved through the following objectives:  

1) Perform a comprehensive literature review with the emphasis on machine learning and 

text mining techniques and their applications. Particular attention will be given to 

applications that have been developed for analyzing traffic accident reports.  

2) Conduct interviews with traffic engineers and safety practitioners who have experience 

reviewing and analyzing crash reports. The interviews can help identify the challenges of 

obtaining quality information from narratives, understand which information in the 

narratives is more frequently searched and identify the methods utilized by analysts to 

process information from crash narratives. 

3) Collect 3-5 years of crash data, including crash narratives, from WisTransportal and 

identify appropriate case studies to demonstrate how the application of text mining 

advances crash analyses.  

4) Develop machine learning and text mining algorithms using different methodologies. 

5) Compare the algorithms’ performance based on two case studies (i.e., crashes related to 

work zones and crashes related to distracted or inattentive driving) and make 

recommendations for improving crash data quality and enhancing safety analysis.  

This report documents the text mining techniques and tools, assessment outcomes of crash flags 

(e.g., work zone), and the key contextual information relating to a crash. Such information can be 

vital for seeking the causal factors of a crash. In addition, maximizing the value of a crash 

narrative will encourage and incentivize law enforcement agencies to use a narrative to capture 

data that are not available in the data fields. 
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2. LITERATURE REVIEW 

Text mining was introduced as a way to enable machine-supported analysis of text (Feldman and 

Dagan 1995). Information retrieval, natural language processing, information extraction, text 

summarization, opinion mining and sentiment analysis are some of important areas of text 

mining research (Allahyari et al. 2017). Text mining has become both popular and necessary in 

many fields, including financial services, health care, transportation, communication and media, 

information technology and internet, political analysis, public administration and legal services 

(Gupta, Lehal, and others 2009; Inzalkar and Sharma 2015; Maheswari and Sathiaseelan 2017).  

Natural Language Processing (NLP) is a computerized text mining technology used for 

analyzing text data, which is based on a set of theories and technologies for the purpose of 

achieving human like language processing (Liddy 2001). An important branch of NLP is text 

classification which aims to assign labels to narratives based on the content or context of the 

narratives. Recently, text classification attained considerable attention because of its application 

in e-mail filtering, spam detection, web-page content filtering, automatic message routing, 

automated indexing of articles, and searching for relevant information on the Web (Kowsari et 

al. 2019). Meanwhile, a variety of machine learning (ML) techniques have been developed, such 

as Bayesian classifiers, support vector machines, k nearest neighbors, decision trees, and neural 

networks and have been successfully used for text classification for decades (Yang 1999). The 

growing interest in NLP and ML techniques, as well as the availability of textual dataset has 

prompted the applications of such techniques for text classification in transportation engineering 

fields, especially in the highway safety data analysis. Some of the notable safety applications 

include (1) crash contributing factor identification, (2) crash severity analysis, (3) crash event 

and cause analysis, and (4) crash type classification (e.g., speed-related, pedestrian-related). The 

dataset used to classify crash narratives includes various text data such as police reports, auto 

insurance claims reports, and social media data.  

Most text mining algorithms require some text preprocessing, such as tokenization, filtering, 

lemmatization, stemming, etc. Once preprocessing has been completed, algorithms for 

classification, clustering, or information extraction are applied to the text. Some commonly used 

clustering algorithms are hierarchical clustering, k-means clustering, and probabilistic clustering 

and topic models (e.g., probabilistic latent semantic analysis, latent Dirichlet allocation) 

(Allahyari et al. 2017). Examples of popular classification algorithms include naive Bayes, 

nearest neighbor, decision tree, decision rule, support vector machine, logistic regression, 

Rocchio’s algorithm, neural network, associative classifier, and centroid based classifier 

(Allahyari et al. 2017; Brindha, Prabha, and Sukumaran 2016; Korde and Mahender 2012). 

In highway safety analysis, most of the text mining-based studies are conducted using social 

media and medical data, while a few studies are conducted using crash narratives. Text mining 

techniques used to identify a specific type of crashes are primarily based on keywords, or words 

that are direct or indirect indicators of certain unique and specific crash characteristics. For 
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example, Sorock et al. applied Haddon’s injury epidemiology model of crash phases to identify 

pre-crash vehicle activities and various work zone crashes from automobile insurance claim 

narratives. In a pilot study, they manually selected a set of work zone-related words and showed 

that the keyword “construction” had maximum frequency in the dataset (Sorock, Ranney, and 

Lehto 1996). Williamson et al. extracted patterns of events of fatal injuries from crash narratives 

based on a pre-established text search mechanism (Williamson et al. 2001).  

Many researchers used keywords-based text analysis in transportation safety. For example,  

Zheng et al. identified secondary crashes by using the keywords, and the distance of keywords, 

which was calculated by the absolute difference of indexes between two types of keywords: 

relationships keywords (RKWs) and events keywords (EKWs) (Zheng et al. 2015). 

Rakotonirainy et al. used a keyword selection approach that automatically selects keywords in 

the narratives. They used text mining to identify curve-related crash factors and their associated 

severity from insurance claim reports. The words mentioned only in curve-related crashes were 

selected as keywords, and the keywords with high frequencies were used as the main factors 

contributing to curve-related crashes (Rakotonirainy et al. 2015). Gao and Wu developed a verb-

based text mining method by applying various Natural Language Processing (NLP) techniques 

that automatically identify the sequence of crash events from crash narratives (Gao and Wu 

2013). Their method utilized syntactic and semantic information from the text to overcome the 

limitations of their previous methods that used predefined keywords. However, the process was 

not completely automatic, as the words with similar meaning had to be grouped together 

manually. Trueblood et al. developed a classifier tool in Excel to identify agricultural crash from 

crash narrative. The authors prepared two lists of keywords (agricultural and nonagricultural) 

manually and used the lists to search keywords in the narratives for identifying the agricultural 

crashes (Trueblood et al. 2019). However, their classifier assigns equal weight to the narratives 

that are related to agricultural crash, so it may not be effective for large data sets in which 

narratives are more relevant to agricultural crash. 

With the advance in computational technology, the use of machine learning techniques for text 

mining is also noticeable. Nayak et al. applied Bayesian theory Leximancer tool to find the major 

contributing factors of crashes from crash narratives (Nayak, Piyatrapoomi, and Weligamage 

2009). Zhang et al. conducted a comparative study on Naive Bayes, SVM and decision tree 

methods to find hazardous behaviors from the crash narratives reported by police, and found that 

Naive Bayes is the best binary classifier (Zhang, Kwigizile, and Oh 2016). However, the process 

is not fully automatic because samples of the crash narrative are randomly selected, and the 

samples are manually annotated for training and testing the model. Williams et al. applied latent 

semantic analysis (LSA) and latent dirichlet allocation (LDA) text mining techniques, a bayesian 

model, to detect accident from narratives (Williams and Betak 2018). McAdams et al. used 

multivariate logistic regression to study the role of helmets in reducing the injury rate of  bi-

vehicles using narratives collected from the national electronic injury Surveillance (McAdams et 

al. 2018). The narrative describes the events of actions occurred at the time of accident, and these 
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events help determine the importance of helmet use. Heidarysafa et al. used various 

combinations of deep learning models to study the use of text narratives in finding the causes of 

accidents (Heidarysafa et al. 2019). In order to check whether the reported crash causes are 

consistent with the narrative description, the authors used various combinations of one-

dimensional convolutional neural netwroks (CNN) and recurrent neural networks (RNN) (with 

LSTM and GRU units) with word2vec and GLoVe word embeddings (add citation). Although 

CNN and RNN with word2vec provided better results compared to other base models, these 

models did not work well for minority classes in the dataset. Fitzpatrick et al. used logistic 

regression to identify speed-related missed crash from noisy crash reports (Fitzpatrick, Rakasi, 

and Knodler 2017). But their data processing technique is not completely automatic and requires 

other secondary data (such as structure and road inventory data) to eliminate data noise. Das, S. 

et al. used SVM, RF and XGBoost technologies to classify pedestrian crashes from text 

narratives and found that XGBoost has an accuracy rate of 72%, which is more accurate than the 

other two models (Das, Le, and Dai 2020). They used a very small dataset to train and test the 

model, which may weaken the validity of the results.  

The above discussion shows that naive Bayes, logistic regression, decision tree, SVM, and RNN 

are some of the commonly used classifiers in the highway safety field, but their limitations affect 

the performance of the model in varying degrees. Similar to finding speed-related or pedestrian 

crashes, the problem of identifying missed work-zone (WZ), distracted (DD) and inattentive (ID) 

crashes can be solved by assigning WZ, DD and ID labels to relevant crash narratives, which is 

essentially a text classification task and hence can be automated. Although there are other textual 

data sources such as insurance claims, social media, and news reports, the crash reported by the 

police is more useful because it can be used in conjunction with structural and graphical data. In 

addition, police officers follow general guidelines to record crashes despite that the narrative 

structure varies by officer, location, time, environmental conditions, and crash severity.  

While past research has focused on analyzing various aspects of traffic crashes from crash 

narratives, none of the studies emphasized missed crashes. Their methods are either complicated, 

time-consuming, external data dependent or require substantial manual intervention, which does 

not meet our research goals. Moreover, the data from other sources are not easily accessible to 

the public and can be costly. In this project we implemented and thoroughly evaluated multiple 

text classification methods, including a new classifier Noisy-OR, and compared them. We used 

text classification to automate identification of missed crashes from crash narratives. This task is 

particularly challenging due to data quality issues.  
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3. WISDOT DT4000 CRASH REPORT NARRATIVE SURVEY 

By targeting both groups of the collectors and users, a comprehensive survey was created to 

pinpoint what works and does not. Working with WisDOT, an initial set of questions was 

defined to be distributed. The survey contained 12 questions for the data user and 7 questions for 

the data collector. The survey results in this report are based on 16 responses of Data Users and 

Data Users / Collectors. Most questions were answered on every survey taken. If the responder 

selected that they are a data user & data collector, they answered both sets of questions. 

Of the 16 who responded, 6 (37.5%) were identified as a government employee/onsite consultant 

and 7 (43.75%) are consultants funded by the government. The individual who answered other 

identified as a consultant that uses the information for projects funded by both the government 

and other agencies. 

81% responders said when reviewing the crash data report, 75-100% times they need to review 

the crash narrative section, which shows how important a crash narrative to safety analysis. The 

following Error! Reference source not found. shows the type of work the responders need to r

eview the crash narratives. As can be seen, the top three reasons are highway safety 

improvement program, safety review for improvement programs; and citizen requests. When 

other was indicated, specific reference was made to planning or studies in three of the four other 

responses. One response indicated the data was used for safety certification documentation for 

projects that include safety flags. 

 

Figure 3-1 Survey Result: Use of Crash Narratives 

When asked “Do you look for specific and detailed location information such as which side of 

the roadway or which approach? If you do, please rate the sufficiency of the location information 

saved in the data fields on a 1-5 scale with 5 being the best.”. Of the 16 respondents, all 16 

16.16

27.27

25.45

18.18

5.45

7.27

For what work do you need to review the crash narrative?

Traffic impact analysis

Highway Safety Improvement Program

(HSIP)
Safety review for improvement programs

Citizen Requests

Behavioral patterns for enforcement purposes

Other
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indicated that they look for specific information within the narrative. The average of the 

responses is 3.38. 

The following Error! Reference source not found. shows the reasons why they need to review t

he crash narrative section given the structured data fields.  

 

Figure 3-2 Survey Result: Necessity of Reviewing Crash Narratives 

Other accounted for 4 of the 76 total selected responses. Those responses included that they only 

look at the narrative rather than the data fields (1), to confirm details of the crash (2), and to 

determine the actual location of the crash (1).  

When asked “How often do you find the information you look for in the narrative?”. 87.5% of 

reh responders chose “sometimes”. Only 2 selected “always”. On average, it takes you an 

average of 2.56 minutes to complete reviewing the narrative section in one crash report, with 

minimum of 1 minute and maximum of 5 minutes. Considering there are over 100,000 reportable 

crashes took place every year in Wisconsin, the time spent on reviewing crash reports can be 

substantial. In particular, of the 16 respondents, all indicated that they use manual review to 

6.58

17.11

21.05

17.11

15.79

17.11

5.26

Necessity of reviewing crash narrative in percentage

Find which party is at fault

Find missing information in the data fields

Find out why and how a crash happened

To search for the information ONLY AVAILABLE

in the narrative

To check the CONSISTENCY between data fields

and narrative; or to confirm and verify some

information recorded in both (data fields and

narratives)
To browse for WHATEVER INFORMATION that

may be of useful
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extract data from the crash narratives. Two also indicated that they also use some form of an 

automatic method. 

The following Error! Reference source not found. shows the biggest challenges during your r

eview of narrative section in a crash report? (check all that apply with a scale for the frequency 

of the challenges (in percentage) (5 being every time and 0 being Never) 

 

Figure 3-3 Survey Result: Challenge to Review Crash Narratives 

A total of 43 selections were picked in response to the biggest challenge during the review of the 

narrative section in a crash report. 14 (32.56%) indicated that a lack of details and specifications 

was the most selected answer. Of those who indicated other, 3 indicated that the biggest 

challenge was regarding the location specifics. This could be the actual location of the crash to 

confirming the roadway identifiers. Two indicated that too much or two little information makes 

the narratives difficult as well.  When rating the overall quality of the crash narratives, the mean 

of the recorded data is 3.63 out of 5 with 5 being very good.  

The following Table 3-1 shows the survey responders’ opinions on how to make crash narrative 

review more efficiently? (Check all that apply) 

Table 3-1 Survey Result: Way to Make Narrative Review More Efficient 

Methods to increase crash narrative review more 

efficient 
% 

Count by 16 

Responders 

Use text processing techniques (e.g. text mining and natural 

language processing) to help you screen crash narratives for 

key words and information before your review 

27.27% 6 

2

1 1 1

0

3

1

0 0

1

0

6

4

2

0

3

5 5

1

0
0

1

2

3

4

5

6

7

1 2 3 4 5

Biggest Challenges During Review on Scale 

(1-5 with 5 being every time)

Grammatical Issues Order Sequence of Crash

Conflict with Other Information Lack of Details and Specifications
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Use information retrieval and deep learning techniques to 

help you select relevant crash narratives for review 
18.18% 4 

If any information can be automatically extracted, what 

would you like to see? 
9.09% 2 

Other(please mention below) 22.73% 5 

No 22.73% 5 

Total 100% 22 

 

If the respondent indicated the field of “If any information can be automatically extracted, what 

would you like to see?”, they were prompted to indicate what they would like to see. One 

respondent indicated that a stand-alone pdf of the diagram & narrative could help the data user. 

The other indicated that if possible, identifying if a vehicle crosses the roadway centerline, if a 

rear-end is due to queues from a signal or intersection, and if a vehicle were attempting to pass 

would be helpful.  

Two respondents who indicated other made notes about intersection crashes to be drawn as a 

collision diagram with some standard details to be set. The following note was indicated 

regarding text processing and deep learning, 

 

“Regarding text processing and deep learning, I believe both could be useful - but how 

useful would depend on how good those algorithms are.    There are subtle clues often 

found in the narratives - both the picture that is drawn and what is written.  Both of these 

offer insights into the crash.  For instance, a severe or fatal crash will often have very 

detailed narratives and diagrams - which is an indicator that it was a noteworthy crash.  

Suffice to say, I think it would be challenging, but not impossible, to make this 

information for efficiently available. Since the diagram and narrative are so valuable, the 

biggest efficiency I see would be to make the diagram and narrative more accessible (i.e., 

withdrawn from the hardcopy on a separate stand-a-lone pdf).  Then, between the 

electronic data and the "diagram/narrative" we would have all of the information we 

need to review crashes without asking for the "hardcopies" with the personal information 

drivers provide.  So if a user could pull electronic crash data from the WisTransPortal, 

via the CMAA map for instance, and then be able to download "diagram/narrative" pdfs 

for all of the data pulled it would eliminate the need to request hardcopies and because 

no personal information would be exchanged - and I would think everyone could have 

access to it”. 
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When asked “do you think the crash narrative can be improved?” Of those who responded yes, 6 

commented on consistency of the reports, 5 on the details of the report, and 2 indicating that 

better location indication would be better. Comments on the consistency included adding set 

questions and added training. Improving details included always including specific information 

regarding why and how the crash occurred. Ideas for location included adding GPS coordinates 

for the crashes location and a diagram that shows where the vehicles began, collided, and ended. 

Many had overlaps regarding the consistency, details, and location details being things to 

improve upon. 

In summary, a total of 16 responses were collected for this survey comprised of 14 data users and 

2 data user & collectors. 93.75% of the data collectors identified themselves as consultants or 

government employees. The data users use the crash narratives for a variety of purposes, 

including Highway Safety Improvement Program (15), safety review for improvement programs 

(14), citizen requests (10), and traffic impact analysis (9).  

All indicated that they use the narrative to look for detailed information and the rate that they 

find the information they needed on a scale of 1-5 was an average of 3.38. Most commonly, the 

narrative was used to find out why and how a crash happened (16), to search for information 

only in the narrative (13), to browse for whatever information may be useful (13), find missing 

information in the data fields (13), and to check for consistency (12). When asked how often the 

information is found within the narrative, the conclusion was sometimes.  

Discussing the challenges of reviewing the crash narrative, the lack of details and specifications 

(14) and conflict with other information (12) were the largest problems. When asked the 

frequency of these issues on a scale of 0 – 5 (with 5 being every time), for the lack of details and 

specifications and conflict with other information the mean of the ratings were 2.29 and 2.667, 

respectively. To improve the review of the crash narrative, using text processing techniques was 

indicates 6 times. Other possibilities were identified as improving the consistency of the 

narrative by adding questions or required fields within the narrative and adding a GPS location 

of the crash.  

Users want to see a more consistent narrative written. They do not believe that all narratives are 

hard to analyze but when too much or too little information is provided, they cannot find what 

they are looking for. To improve the narrative, I propose adding GPS coordinates to the crash 

location and specified questions to the crash narrative to ensure that all necessary details of the 

crash are reported.  

The survey sample that was submitted by the data collectors (2) is too small to make 

conclusions. Most answers submitted were identified as not applicable to the questions. It was 

identified that intelligent work features would be helpful, or they would be helpful but might 

introduce some nuisances to the data collection process (e.g., similar to the function of MS word 

auto-spelling check).   
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4. METHODOLOGY  

This section describes the principles and procedures used in the method for identifying missed 

crashes. To reduce manual work and speed up the process of identifying missed crashes, several 

machine learning techniques for text classification are considered in order to determine the best 

classifier. In this study, we implemented (1) multinomial naive bayes (MNB), (2) logistic 

regression (LGR), (3) Support Vector Machine (SVM), (4) Random Forest (RF), (5) K-nearest 

neighbor (K-NN), (6) recurrent neural network with Gated Recurrent Unit (GRU), and (7) a 

probabilistic classifier that combined probabilities using Noisy-OR. To the best of our 

knowledge, the Noisy-OR method has never been used in highway safety research. The rest of 

the section provides a summary of the seven methods. We also developed cascade classifiers 

using Noisy-OR and discussed the performance of the classifiers. Each method requires 

annotated training data (crash narratives); one as positive sample and the other as negative 

sample. The methodology to automatically obtain this training data is described later in the Case 

Studies section. 

 

4.1 Multinomial Naive Bayes (MNB) 

MNB is a classical text mining technique that is used in document classification. In MNB, the 

narrative is treated as a set of words. It uses a fixed set of words to define input vector, where the 

values in the vectors represent word frequencies in the narratives. The probability that a narrative 

indicates WZ crash is calculated by combining the prior probability of a narrative to be in WZ 

class with the conditional probabilities of words given that a narrative is in WZ class. The 

conditional probabilities are estimated by a smoothed version of maximum likelihood estimation 

that uses relative frequency counting. We applied Laplace smoothing to calculate relative 

frequency. More details on MNB can be found in (Manning, Schütze, and Raghavan 2008). 

 

4.2 Logistic Regression (LGR) 

LGR is a supervised linear classification algorithm which models the narratives using a logistic 

function called sigmoid function (Kantardzic 2011). It takes real numbers (i.e. features) as input 

and provides outputs between 0 and 1; and predicts the odds of being a narrative WZ based on 

the values of the independent variables. In our study, the independent variable represents the 

weight (i.e. count frequency, tf-idf) of the words. We applied L2 penalization in objective 

function to handle multicollinearity and overfitting problems (Zhang et al. 2019). 

4.3 Support Vector Machine (SVM) 

SVM was developed by Vapnik and his colleagues (Boser, Vapnik, and Guyon 1992; Cortes and 

Vapnik 1995) based on the principle of structural risk minimization in statistical learning theory. 

SVM has been found to be effective in many text classification problems such as hazard analysis 
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(Zhong et al. 2020), news article categorization and sentiment prediction (e.g., Joachims, 1998; 

Pang et al., 2002). It has been claimed to be less prone to overfitting (Joachims, 1998).  As a 

supervised learning method that can be used for regression and classification, SVM uses kernel 

to map data in low dimensional space to a higher dimensional feature space and generates a 

hyperplane to separate the data by class. In this study, we used words as features and their 

number of occurrences as feature values. We applied linear classifier kernels because of its 

common use in text mining given that the word-based feature space is already very high 

dimensional.  

 

4.4 K-Nearest Neighbor (K-NN) 

K-NN is a non-parametric lazy machine learning algorithm used in the field of pattern 

recognition. It is one of the most widely used data mining techniques in classification problems. 

The classification score is calculated based on the majority votes of the k nearest narratives 

where the nearness is computed using a suitable distance measure. In our study, there are only 

two classes - WZ and Non-WZ or NWZ. The performance of K-NN depends on the distance 

measure used. Therefore, an appropriate distance measure must be selected to achieve the best 

K-NN performance. The two most common distance measures in the text classification field are 

Euclidean distance and cosine distance. We applied Euclidian distance metric, which is an 

extension of Pythagoras’s theorem in multi-dimensional space. It calculates the distance by 

taking the square root of the sum of the squares of the difference between two narrative vectors 

and the value ranges from 0 to any positive number. We applied different values of K (i.e. 3, 5, 

7, 9) for K-NN and found that K =7 gave the best result.  More details of the K-NN can be found 

in (Cunningham and Delany 2020). 

 

4.5 Random Forest (RF) 

Random Forest was first developed by Tin Kam Ho (Ho 1995) based the random subspace 

method. RF is a learning algorithm based on ensembles of decision trees. RF is very popular in 

the field of pattern recognition and machine learning, and is used to solve high-dimensional 

classification problems (Breiman 2001). It fits several decision tree classifiers on various 

randomly selected sub samples (drawn with replacement) from the training set and takes the 

average of all probability predictions of the trees to improve accuracy and control overfitting 

(Breiman 1999).  

4.6 Gated Recurrent Unit (GRU) 

Recurrent neural network (RNN) is a special neural network architecture for handling sequential 

data such as text narratives which are sequences of words. While processing sequential inputs 

one item at a time (for example, one word at a time), RNN needs a mechanism to learn to 

remember important items it saw earlier and forget the unimportant items. This is achieved using 
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special neural networks cells. The two most used such cells are Gated Recurrent Unit (GRU) and 

long short-term memory (LSTM). The GRU proposed by Cho et al. (Cho et al. 2014) is similar 

to LSTM with a forget gate (Gers and Cummins 1999); but compared with traditional LSTM, it 

has a shorter training time and fewer parameters. Due to these advantages, we used GRU in this 

work. The GRU does not have any cell state like LSTM and uses hidden state to transfer 

information. The GRU has two gates: the reset gate decides how much past information will be 

transferred to the next step, and the update gate decides what information to be added or 

discarded to the current layer. The update gate is very similar to the forget and input gate of an 

LSTM. Readers are referred to (Cho et al. 2014) for more information. 

 

4.7 Noisy-OR Based Classification 

In the Noisy-OR method, the probability of being a specific type of crash narrative is calculated 

by combining the probability scores of unigrams (words) and bigrams (two consecutive words) 

in the narrative. It is a probabilistic extension of logical “or” (Oniśko, Druzdzel, and Wasyluk 

2001; Vomlel 2006). If any input has a high probability score (such as a value close to1) then the 

combined probability in Noisy-OR becomes high. The combined probability in Noisy-OR is 

even higher if more input probabilities are high.  

To apply Noisy-OR classifier to crash narratives, we need to compute the probabilities of 

unigram, bigram, and trigram and combining these probabilities using the Noisy-OR method, 

which are discussed in the following section. 

 

4.7.1 Equation of Simple Count Probability  

For every unigram, bigram, and trigram w in the corpus, the method first computes the 

probability that if it is present in a narrative, then the narrative is positive, i.e., P(positive|w). 

Then, this probability is computed using simple frequency counts, as shown in Equation 1. 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 (𝑤) =
Positive Count(w)+1

Positive Count (w)+Negative Count(w)+2
     (1) 

where w is a unigram, a bigram, or a trigram. Positive Count means the number of occurrences 

of w in the positive narratives. Similarly, the Negative Count indicates the number of events of w 

in the negative narratives. 

The Equation essentially computes out of all the narratives in which w occurs how many 

narratives are positives, which is the probability that a narrative will be positive if w occurs in it. 

Then, smoothing is applied by adding one in the numerator and two in the denominator of the 

Equation. This simple version of Laplace smoothing assumes w occurred at least once in a 

positive narrative and a negative narrative. Smoothing done in this way ensures that among the 

unigrams, bigrams, and trigrams that have zero negative counts, the ones with higher positive 

counts receive higher probability scores. Otherwise, they will all receive an unrealistic 
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probability score of 1 because they occurred in a few positive narratives and no negative 

narratives.  

In case of the words that appear in both positive and negative narratives with very high 

frequency (Count), it is likely to reduce the probability of that specific word. For example, if a 

unigram ‘unit’ appears in the narratives of a specific type of crash (positive case) 110,933 times 

and in all the other narratives (negative cases) that excludes that specific crash 1,000,904 times, 

which according to Equation 1, gives a probability of 0.099. It indicates that the word is not 

relevant for the classification task. On the other hand, if a unigram/ bigram/ trigram appears in 

both positive and negative narratives with high frequency but has a higher frequency in positive 

narratives, Equation 1 gives a good probability score to the corresponding unigram/ bigram/ 

trigram. For example, if a unigram ‘inattentive’ appears in the narratives of a specific crash 2743 

times and in all the other narratives 1808 times, which according to Equation 1, gives a 

probability of 0.6023, indicating that the word is relevant for the classification task. 

To classify a given narrative as positive or negative, its probability of being positive is computed 

by combining the probability scores of the unigrams, bigrams, and trigrams present in it. The 

method needs to compute P(positive|w1,w2,...,wn), where w1..wn are unigrams, bigrams, and 

trigrams present in the narrative. It computes it by combining the probabilities P(positive|w1), 

P(positive|w2),…, P(positive|wn), which have been computed as described earlier. Noisy-OR is a 

method of combining probabilities (Zagorecki and Druzdzel 2004), which is commonly used in 

Bayesian networks (Oniśko et al. 2001; Vomlel 2006). Instead of true/false values in Noisy-OR, 

the inputs and output are probabilities (hence termed “noisy”). Analogous to logical “or”, in 

Noisy-OR, if any one of the input probabilities is high (i.e., close to 1), then the combined 

probability is high. But unlike logical “or”, the combined probability is even higher if more input 

probabilities are high. The combined probability is low (i.e., close to 0) only when all the input 

probabilities are low. Noisy-OR combined probability is mathematically computed as shown in 

Equation 2, where the probability score of a narrative is calculated by combining the probability 

scores of unigrams, bigrams, or trigrams occurring in it.        

𝑁𝑜𝑖𝑠𝑦 − 𝑂𝑅 𝑃𝑟𝑜𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 (𝑁) =  1 −  ∏ (1 − 𝑃𝑖)𝑗𝑛
𝑖,𝑗=1         (2) 

where N is a given narrative, Pi indicates the probability score of ith unigram, bigram, or trigram 

as computed from the training data using Equation 1, and j means the number of occurrences of 

that ith unigram, or bigram or trigram in the crash narrative N.  

It should be clear from Equation 2 that if there is no unigram, or bigram, or trigram in a narrative 

with a high probability score, then the probability score of the narrative will be close to zero. On 

the other hand, a single unigram, or bigram, or trigram with a high probability score will result in 

a high probability score of the entire narrative. This fact is precisely the behavior that has been 

observed in our data. Furthermore, more unigrams, bigrams, and trigrams with high probability 

scores make the combined probability score higher.  
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4.7.2 Equation of Weighted Count Probability 

The probability scores computed using Equation 1 will be adversely affected if the number of 

negative narratives is disproportionately higher than the number of positive narratives. In the 

Weighted Count Probability Equation, the positive counts are weighted by the average number of 

positive word appearance in the positive narratives. It is designed to capture the 

unigrams/bigrams/trigrams that appear not only more often in positive narratives than negative 

narratives, but also more often per positive narrative than per negative narrative. The Weighted 

Count Probability is formulated in Equation 3: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 (𝑤) =
Positive Count(w)∗(

Positive Count(w)

Number of instances in positive
)+1

(Positive Count (w)∗(
Positive Count(w)

Number of instances in positive
))+(Negative Count(w)∗(

Negative Count(w)

Number of instances in negative
))+2

        (3) 

Here, Positive Count and Negative Count represent the same meaning as in Equation 1. Number 

of instances in positive means the total number of reported cases for distracted or inattentive. The 

Number of instances in negative means the total number of cases not reported as distracted or 

inattentive. 

With the probability scores obtained using Equation 3, the probability of a positive narrative is 

computed using the Noisy-OR method described earlier. Given that a positive narrative will have 

an indicative word mentioned more than once, the Noisy-OR probability score of the narrative 

will increase accordingly (note that in Equation 2, (1 − 𝑃𝑖) is raised to the power of j, the 

number of occurrences). In contrast, a negative narrative that has fewer indicative words will 

have a lower probability of being positive. 

  

4.7.3 Model Development for Three Classes Classification 

If a crash is potentially associated with two or more types, classifying the crash based on its 

narrative can be challenging. In this study, distinguishing between distracted driving (DD) 

related crashes and inattentive driving (ID) related crashes exemplifies this challenge as these 

crashes, also known as distracted or inattentive (DOI), may not be adequately flagged by the 

police officers who filled out the crash report form, and there could be no data field to 

differentiate between DD and ID. Our strategy is to extract pertinent information that is more 

relevant to one type than the other if such a dominance exists. Accordingly, two types of models 

have been developed: the hierarchical model and the priority model. 

Figure 4-1 shows the hierarchical model where the Noisy-OR score by the DOI classifier for a 

specific narrative pass through the DD and ID classifiers, respectively, and result in separate 

Noisy-OR scores S1 and S2. This model can first identify NDOI (non-distracted and/or 

inattentive) cases if the score of the DOI classifier is lower than a threshold value (shown as 

“thrs” in Figure 4-1). Next, if S1 is greater than S2, the narrative is classified as a DD narrative; 

otherwise, an ID narrative. 
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Figure 4-1 Hierarchical Model 

However, the model performance can be susceptible to the imbalanced performance of the DD 

and ID classifiers. For example, the DD classifier may perform much better than the ID classifier 

if the DD classifier has more extensive training dataset than the ID classifier and/or if the DD 

classifier has more distinctive unigrams and bigrams than the ID classifier. The limitation leads 

to the creation of models based on priority.  

Figure 4-2 and Figure 4-3 are both priority models in which Figure 4-2 gives high priority to the 

DD classifier while Figure 4-3 assigns high priority to the ID classifier. In the priority model-DD 

(Figure 4-2), the crash narrative passes through the DOI classifier first. This classifier will 

determine if the given narrative is DOI or NDOI depending on a threshold value (thrs1 in Figure 

4-2). Next, if the Noisy-OR score by the DOI classifier is greater than the threshold (thrs1), the 

narrative will go through the DD classifier. The purpose of the DD classifier is to determine if 

the given narrative is a “distracted” narrative or not. If the generated Noisy-OR score by the DD 

classifier is greater than the threshold (thrs2 in Figure 4-2), the narrative is classified as a 

“distracted” narrative; otherwise, it will go through the ID classifier. Then, if the Noisy-OR score 

by the ID classifier is greater than the threshold (thrs3 in Figure 4-2), the narrative is classified as 

an “inattentive” narrative; otherwise, it will be classified as NDOI narrative.  



 

17 

 

 

Figure 4-2 Priority Model-DD Classifier having Higher Priority 

In the priority model-ID (Figure 4-3), the crash narrative first passes through the DOI classifier, 

where a threshold value (thrs1 in Figure 4-3) determines if the given narrative is DOI or NDOI. 

Next, if the Noisy-OR score by the DOI classifier is greater than the threshold (thrs1), the 

narrative will go through the ID classifier. If the generated Noisy-OR score by the ID classifier is 

greater than the threshold (thrs2 in Figure 4-3), the narrative is classified as an “inattentive” 

narrative; otherwise, it will go through the DD classifier next. Then, if the generated Noisy-OR 

score by the DD classifier is greater than the threshold (thrs3 in Figure 4-3), the narrative is 

classified as a “distracted” narrative; otherwise, it will be classified as an NDOI narrative.  

 

Figure 4-3 Priority Model-ID Classifier having Higher Priority  
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5. CASE STUDIES  

In this section, two case studies are conducted with all seven methods introduced in the 

Methodology section. One is to identify unaccounted work zone crashes based on crash narrative 

and the other is to find missed distracted/inattentive driving related crashes from crash narrative. 

In the second case study, distracted driving crashes are further separated from inattentive driving 

cases. All the model results are summarized and compared; their performance is discussed; and 

the most appropriate ones are recommended. 

5.1 Work Zone Crashes 

Work zone activities are essential for maintaining good roadways, supporting economic 

development and competition, and improving safety. While road work is temporary, the poor 

decisions and mistakes made by motorists that lead to work zone crashes can have lasting 

impacts. According to the Federal Highway Administration (FHWA), 27,037 people, or 773 per 

year, died in work zone crashes in the U.S. from 1982 through 2017 (CDC, 2020). In Wisconsin, 

more than 2,600 work zone crashes took place every year over the past five years, resulting in 

5,200 injuries and 50 deaths (WisDOT, 2020). Work zone safety for both motorists and workers 

is an urgent issue that must be addressed through better design, operations and management. 

Work zones near traffic, whether they involve major road construction, utility work, or 

emergency vehicles at the side of the road, always present some risk to both drivers and workers. 

Identifying and analyzing historical work zone crashes can save lives.  

Observational safety analysis has been instrumental in identifying potential deficiencies in work 

zone design and traffic operations. Examples of safety analyses based on crash data include: 

crash rate estimation across different work zone configurations (Cheng et al. 2012; Daniel, 

Dixon, and Jared 2000; Elias and Herbsman 2000; Khattak, Khattak, and Council 2002); crash 

pattern identification and categorization(Garber and Zhao 2002; Graham, Paulsen, and Glennon 

1978; Weng et al. 2016); work zone crash prediction (Li and Bai 2009b; Meng, Weng, and Qu 

2010); and evaluating the safety of innovative work zone designs and management strategies (Li 

and Bai 2009a; Maze, Burchett, and Hochstein 2005; Rahman et al. 2017; Ullman et al. 2008). 

All the aforementioned examples are dependent on the completeness and accuracy of work zone 

crash data.  The crash in the structured data may not have been coded or recorded as that specific 

crash type.  

 

5.1.1 Data Collection 

The dataset comprised 377,479 crash reports that occurred between January 1, 2017 and October 

31, 2019 that were acquired from the Wisconsin Department of Transportation (WisDOT) 

through the WisTransPortal data hub. A construction zone flag (CONSZONE) within the crash 

data indicates whether “a crash occurred in a construction, maintenance, or utility work zone or 
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is related to activity within a work zone”.  The reported work-zone (WZ) crashes make up 

2.27%, 2.49%, and 1.93% of total crashes for years 2017, 2018 and 2019, respectively. 

Narratives were included in 94.21% of the reported WZ crashes and 77% of the non-work zone 

(NWZ) crashes. The ratio of WZ to NWZ crashes is 1:36, which is a highly imbalanced dataset.  

The two following sample crash narratives were randomly chosen from the dataset to illustrate 

the structure of crash narratives.  

WZ crash narrative example: “Entering construction zone with right lane closure. Unit 1 driver 

stated unit 2 and a semi were straddling center line. Unit 1 driver stated thought unit two was 

merging to right lane toward hwy c exit and tried to pass unit 2. Unit 1 driver stated himself and 

semi were straddling traffic lane to stop other drivers from passing on right as right lane was 

closed ahead. Unit 2 stated unit 1 attempted to pass on left shoulder but ran out of room due to 

portable warning sign. Unit 2 driver stated unit 1 driver side swiped driver side.” 

NWZ crash narrative example: “Unit #2 was stopped in the inside straight lane of eastbound 

university ave., at a red light at the intersection with n. Midvale blvd.  Unit #1 was traveling in 

the same lane directly behind unit #2, and was unable to stop in time to avoid a rear end 

collision with unit #2.  The roadway was wet, and the weather conditions were rainy.” 

The numeric values within the narratives usually represent date, time, driver and road 

information. The narratives have a certain formality but can still be flexible in the sequence of 

events. In the WZ narrative, some sentences contain words that indicate WZ (e.g., “construction 

zone”, “right lane closure”, “portable warning sign”), while others do not contain any WZ 

indicators. In fact, the latter cannot be distinguished from sentences that could have been in a 

NWZ narrative. This observation is true of other WZ narratives as well; only a few words are 

indicative of a WZ while the rest of the narrative is not, suggesting that presence of just a few 

words can be used to identify a WZ narrative without having a deep understanding of the entire 

narrative. Additionally, there are no such words in the narrative that specifically indicate NWZ. 

In this study, the 2017 and 2018 work zone crash data were used to train a classifier (described 

later) to categorize a narrative as either WZ or NWZ and the NWZ narratives of 2019 (Data was 

available till October 31, 2019 ) were used as test data to recover missed WZ crashes. The 

narratives corresponding to reported WZ crashes (i.e., marked under CONSZONE flag) were 

used as examples of WZ narratives to train the classifier. Similarly, the narratives corresponding 

to reported NWZ crashes (i.e., not marked under CONSZONE flag) were used as examples of 

NWZ narratives. The method did not require the manual annotation of training examples, a task 

that usually requires the huge effort of training a classifier. However, the training dataset created 

does include a high level of noise. On one hand, many narratives of reported WZ crashes may 

not have any relevant information about the WZ. For example, the officer may have already 

indicated a crash as WZ by using the CONSZONE flag, hence not feeling the need to mention it 

in the narrative. However, WZ crashes are known to be missed, and there are narratives 
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corresponding to reported NWZ crashes that are actually WZ. The classifier may have difficulty 

learning from such noisy training data. 

 

5.1.2 Data Cleaning and Pre-Processing 

Several text mining techniques for data cleaning and pre-processing were applied to prepare the 

data. The key terminologies from the text mining domain are introduced here: 

  

• Corpus is the collection of all the narratives. 

• Tokenization is the process of breaking up the sentence into a token. A token can be 

words, numbers, a punctuation, unigram, or bigram. The terms unigram and bigram are 

used interchangeably as the token in this study.  

• Collection frequency (cf) is the number of times a token occurred in the corpus. 

• Term frequency (tf) is the number of times a token occurred in a narrative. 

• Document frequency (df) is the number of documents/narratives that contain a token. 

Only the tokens with high df values in WZ narratives will have a high impact on the 

model. 

 

In the training dataset, the narratives were first lower-cased to merge the occurrences of the same 

word in different cases. Then, all punctuations and special characters (e.g., ! " # $ % & ' ( ) * + ,  

- . / : ; < = > ? @ [ / ] ^ _ ` { | } ~) were removed from the narratives. Next, the narratives were 

converted into tokens to build a vocabulary list from the training set. The narratives may include 

spelling errors and/or words in multiple forms, such as “zone” and “zones” or “construction” and 

“construct”, which are common issues when mining unstructured text data. While some text 

mining techniques can handle these issues, there is no guarantee the problem will be solved 

completely. Furthermore, improper processing of these words may lead to new problems. Thus, 

the words in the vocabulary list were kept as-is.  

Research shows that machine learning algorithms cannot provide good  performance for an 

imbalanced dataset  that has far fewer number of examples of one class compared to the other 

(Jeong et al. 2018).  Based on the ratio of reported WZ and NWZ crash narratives, our data set 

can be called an unbalanced dataset (Leevy et al. 2018). A balanced dataset can be obtained by 

oversampling or undersampling. For some classifiers (such as SVM), oversampling can degrade 

their performances (Glen 2019). To create a balanced dataset for MNB, LGR, SVM, RF, K-NN 

and GRU, we randomly selected 2,000 WZ crash narratives and 2,000 NWZ crash narratives 

from crash reports from the years 2017 to 2018, resulting in the number of feature vectors in 

training set to be 4,000. Similarly, we chose another 4,000 as validation data from crash reports 
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from the years 2017 to 2018. The crash narratives from the year 2019 were used for evaluation 

which is later described in Section 5. 

Simple data processing techniques, such as case folding (turning words into lowercase), 

punctuation and word spacing removal techniques are applied to prepare data for all methods. In 

addition, all redundant terms (such as stop words,) and the words with length (number of 

characters) less than 4 were deleted from the narratives for the methods GRU, LGR, SVM, RF, 

and K-NN models.  

 

5.1.3 Feature Generation and Model Parameters Tuning  

The tasks of feature generation and model parameter tuning are different among the classifiers, 

which are described sequentially in this subsection. In Google Colab1, we used python as 

programming language, the machine learning library TensorFlow2 for GRU, and the machine 

learning library sklearn1 for MNB, LGR, SVM, K-NN and RF to generate features and develop 

models. After processing the narratives, we converted narratives into tokens (unigrams) by count 

vectorization. After trying input vectors with various lengths such as 50, 100, 200, 300, 500, 

1000, 5000, and the full length of vocabulary, we found that the input vector with length 500 

gives the best result for MNB, LGR, SVM, K-NN and RF in the reported WZ in the training 

dataset. In this process, we built a vocabulary that only considers the top 500 words ordered by 

word frequency across the narratives. We fine-tuned other model-specific parameters of all 

models based on training dataset and used the best parameters for evaluation. We also tested 

advance data processing techniques such as lemmatization, bigram tokenization, tf-idf weighting, 

and different vectorization architectures to train MNB, LGR, SVM, K-NN, and RF. No 

significant improvement was observed, rather the model performance degraded for some.  

For GRU, we used 154, the third standard deviation of the narrative length, as the input vector 

length and applied post padding to the vector to fill with 0 if the input length was shorter. The 

tokens were converted to vectors using pre-trained Google word2vector3. Words that did not 

exist in the dictionary were initialized with a random number in the range of 0 to √0.25 using 

Gaussian distribution. We developed GRU by stacking two GRU layers (each containing 32 

hidden units) and a Dense layer (containing 1 hidden unit with sigmoid function). The Dense 

layer provides the final output of the model. We used binary cross-entropy as the loss function, 

32 as the mini-batch size, Adam as the optimizer, and the early stopping in the callback function 

to find the best model.  

We implemented Noisy-OR in python. After data processing, unigrams and bigrams were 

extracted from all WZ and NWZ narratives of 2017 to 2018. Then, the probability score of each 

 
1 Google Colab at https://colab.research.google.com/notebooks/intro.ipynb#recent=true  
2 TensorFlow at https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU  
3 Google wor2vec was downloaded from https://code.google.com/archive/p/word2vec 

https://colab.research.google.com/notebooks/intro.ipynb#recent=true
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU
https://code.google.com/archive/p/word2vec
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unigram and bigram was calculated using Equation (1) to be used in the Noisy-OR method. 

Unigrams and bigrams with probability scores less than 0.25 or those that appeared less than four 

times in the narratives were discarded.  

  

5.1.4 Results and Analysis 

In this study, we have implemented 7 classifiers: Noisy-OR, MNB, LGR, SVM, K-NN, RF, and 

GRU. We used n-grams (e.g., unigrams and unigram+bigram) with Noisy-OR, which are 

discussed in this section. The characteristics of missed crashes are analyzed from spatial and 

temporal perspectives, along with other features. The additional analysis is expected to provide 

insight on the circumstances in which crashes are not reported as WZ related so that 

recommendations can be made for improving future data collection.   

During our manual review for evaluation purpose, we observed that the narrative could have 

multiple WZ-related keywords that would help identify missed WZ crashes. Therefore, 

analyzing the keywords captured by a classifier during the training phase can provide insights 

about the classifier. The 2017-2018 crash data were cleaned and preprocessed, showing 10,875 

unigram and 96,550 bigram words (tokens) in the corpus. Table 5-1 presents the top ten positive 

unigrams and bigrams and their corresponding probability scores. As shown in Table 5-1, the 

bigram approach extracted more WZ-related information than the unigram approach. However, 

despite high probability scores, some positive unigrams did not carry meaningful information 

such as “Kampo”, “Kucej”, or “Werych”. While “Kampo”, “Kucej”, and “Werych” may appear 

only in WZ cases, at a very low frequency, meaning including them in the Positive Unigram list 

may degrade the model’s performance. For example, if a narrative has many such unigrams, the 

Noisy-OR may tend to classify it as a WZ crash even if it’s not.  

The document frequency (df) and collection frequency (cf) of the training set were calculated to 

examine how the positive unigrams and bigrams with high probability scores influence the 

proposed method. The classifier performance did not degrade much due to lower document 

frequency(df) of the less meaningful positive unigrams and bigrams. Thus, an important positive 

token should have both high df and cf values and with high probability score.   

 Table 5-1 Top Ten Positive Unigrams and Bigrams by Probability Score Using Equation 1 

Rank Positive Unigram Positive Bigram 

Positive Words Probability Positive Words Probability 

1 flagman 0.960 active construction 0.990 

2 taper 0.947 in construction 0.988 
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3 barreled 0.937 temporary cement 0.983 

4 dividers 0.929 zone where 0.972 

5 roadworks 0.923 construction crew 0.971 

6 kampo 0.917 zone lane 0.964 

7 unfinished 0.917 interstate is 0.960 

8 flaggers 0.917 no workers 0.960 

9 kucej 0.909 flag person 0.957 

10 werych 0.900 workers present 0.956 

 

Table 5-2 populates a list of the top 15 important positive unigrams and bigrams ranked by df, cf 

and probability score (pr) in a decreasing order. In the positive unigram list, the token 

“construction” is the most important because it has the highest df and cf values. The most 

important token in the positive bigram list is “construction zone”. Approximately 35.15 % of the 

WZ crash narratives contain the token “construction”, whereas 16.16% of WZ crash narratives 

contain “construction zone”. Table 5-2  shows that the positive bigram list offers more specific 

WZ crash information and higher probability scores than the unigram list.  

Table 5-2 Top 15 Positive Unigrams and Positive Bigrams By df, cf, and Probability Score 

Rank Positive Unigram Positive Bigram 

Token  cf df Pr Token  cf df Pr 

1 construction 2960 2088 0.89 construction zone 966 826 0.9 

2 zone 1181 972 0.45 the construction 763 625 0.82 

3 closed 743 588 0.44 a construction 484 437 0.77 

4 barrels 407 314 0.69 to construction 320 312 0.73 

5 closure 265 191 0.61 was closed 242 228 0.51 

6 orange 192 152 0.34 construction barrels 195 167 0.77 

7 barrel 228 147 0.56 lane closed 212 161 0.67 

8 temporary 170 126 0.37 construction unit 158 156 0.78 

9 zoo 219 123 0.56 under construction 151 149 0.79 

10 cones 166 122 0.45 construction area 158 136 0.82 

11 workers 120 110 0.52 road construction 145 135 0.68 
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12 barriers 119 97 0.49 work zone 161 132 0.92 

13 barricades 107 78 0.42 the zoo 206 120 0.67 

14 attenuator 145 74 0.47 construction and 123 120 0.7 

15 worker 95 67 0.51 zoo interchange 181 114 0.67 

* cf = collection frequency in WZ narratives, df = document frequency in WZ narratives, pr = probability. 

The unigram method will classify a narrative as a WZ crash if the narrative contains the token 

“construction” (pr= 0.89) from the positive unigram list only because the threshold value is 

greater than or equal to 0.89. The df of “construction” is much higher compared to other 

unigrams in the list, so the misclassification rate by the unigram method will be higher. 

Compared with the positive unigram “construction”, the positive bigram “construction zone” 

(pr= 0.90) is more contextual and has a higher df than the remaining bigrams in the list. A 

narrative with the presence of “construction zone” instead of “construction” is more likely to be 

correctly classified as a WZ crash. The manual review result shows that all of the NWZ 

narratives that contain “construction zone” are true WZ crashes. However, 22 NWZ narratives 

that contain “construction” are not WZ crashes. 

Positive tokens such as “fst”, “kampo” and “kicmol” in the positive unigram list do not carry any 

meaningful information. These unigrams have a small df with high probability scores, meaning 

they should be discarded to reduce the misclassification rate. The positive token lists also contain 

names of locations such as “zoo” in unigram and “the zoo4” in bigram. The presence of those 

tokens can cause the Noisy-OR method to misclassify NWZ crashes as WZ crashes.  

The results of LGR (Zhang et al. 2019) and linear SVM (Chang and Lin 2008; Cuingnet et al. 

2011; Guyon et al. 2013) can be explained by the magnitudes of the coefficients of the words. 

However, their interpretations are different. In linear SVM, if the absolute value of the 

coefficient of the vector component (word) is smaller than the coefficients of other components, 

the coefficient of this component has little influence on the classification result, and vice versa 

(Cuingnet et al. 2011). In LGR, the coefficient indicates the log odds of being a positive class 

(WZ crash), and the exponent of coefficient (𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)  indicates the log odds ratio. For 

example, the log odds of WZ crash is 4.34 times higher when a narrative has the token 

“construction” (Figure 5-1) compared to the narratives that do not have this word. Or the odd of 

a narrative being a WZ crash is 76.71 times higher for the presence of word “construction” 

compared to not present of that word in the narrative. Due to difference in interpretations, the 

LGR cannot be directly compared with SVM using the coefficient of component (token). Figure 

5-1 shows the top 30 words of LGR and SVM. There are 14 words with positive coefficients and 

16 words with negative coefficients in LGR, and there are 17 words with positive coefficients 

and 12 words with negative coefficients.  

 
4 Zoo interchange construction is the most complex and expensive highway project in Wisconsin’s history, which 

began in 2014 with an expected completion date of 2022. 
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Figure 5-1 Important Words found by LGR and SVM 

For Noisy-OR, we selected important words based on  probability score (pr). Interestingly, the 

words in the top 15 unigrams and bigrams of the Noisy-OR word list (Table 5-2)  are also 

common in the word lists of LGR and SVM (Figure 5-1). But, there are no words (unigram and 

bigram) with negetaive coefficient like LGR and SVM in Noisy-OR that can lead a classifier to 

conclude negative class. The number of  positive unigrams and bigrams with probability scores 

greater than 0.25 are 154 and 1,665, respectively. Although LGR and SVM can identify good 

positive words (words with high coefficient values), the irrelevant words with negative 

coefficient actually degrades the performacne of the model.  

The deep learning models (GRU in our case) are often regarded as blackbox models because the 

internal mechanism of the alogrithm is not interpretable. In this study, we gained some insights 

on our GRU model from its output. The manual review of GRU’s top 100 narratives helped 

reveal important keywords. For example, the 100 narratives with top GRU scores contained the 

WZ related word “construction”, which means that GRU emphasized this word while classifying 

the narratives. The other important words in the narratives are very similar to that of LGR, SVM, 

and Noisy-OR. 

 

construction(76.72) 4.3
icy(0.055) -2.9

closed(11.24) 2.4
barrels(9.36) 2.2
zoo(8.09) 2.1
cones(7.69) 2.0

ice(0.22) -1.5
work(4.47) 1.5
closure(4.08) 1.4

driveway(0.25) -1.4
zone(3.84) 1.3

legally(0.28) -1.3
cement(3.40) 1.2

sliding(0.30) -1.2
snow(0.30) -1.2
limit(0.30) -1.2

barrel(3.27) 1.2
hill(0.34) -1.1

wasnt(0.34) -1.1
assisting(0.35) -1.1

working(2.85) 1.0
pushing(2.82) 1.0

roundabout(0.36) -1.0
video(0.37) -1.0

interstate(2.61) 1.0
swerve(0.40) -0.9

water(2.45) 0.9
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conditions(0.41) -0.9
foot(2.39) 0.9
concrete(2.39) 0.9

-5.0 0.0 5.0
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5.1.5 Model Evaluation and Discussion 

For our first evaluation, the standard evaluation metric of area under ROC curve (AUC) was 

used to measure overall performance of all the classifiers. We randomly selected 100 WZ and 

100 NWZ reported crash narratives from the 2019 crash reports, and manually marked the true 

positives (missed WZ crashes) and true negatives (true NWZ crashes). We found that only 36 

cases were truly positive in WZ narratives, and all were true negatives in NWZ narratives. The 

surprising result of WZ narratives forced us to review another 200 WZ reported cases, and that 

time we found 56 true positives. In this way, we obtained 92 true WZ cases and 208 NWZ cases 

from the 300 reported WZ narratives; and 100 true NWZ cases from the 100 reported NWZ 

narratives. In total, the test dataset contained 92 WZ cases and 308 NWZ cases out of the total 

400 crash reports. We used this manually reviewed dataset to compare the models using AUC. 

We can infer from the above numbers that the WZ crash narrative in the training data contains 

approximately 70% or 208/300 noisy narratives that do not contain any WZ related words. 

During the manual review process, we also observed that only a few important keywords or 

phrases in the true WZ narratives are relevant for classification.  

From the results obtained using first evaluation described above, we found that Noisy-OR 

(unigram+bigram) achieved the highest AUC score (0.98) and GRU achieved the second highest 

AUC score (0.97). LGR (0.96) and SVM (0.95) provided similar AUC scores, while MNB and 

RF had AUC scores of 0.95 and 0.87, respectively. The K-NN achieved the lowest AUC score 

(0.65). We also found that the ROC curves of Noisy-OR, GRU, SVM and LGR follow similar 

trend. Since the differences in AUC values for these models are small, the AUC cannot be used 

to determine the best model. While constructing the test dataset through manual reviewing, we 

had found that it had many easy WZ and NWZ cases, which may be the reason for the small 

differences in AUC values.  

Although the AUC method helps in evaluating the classification performance of the classifiers, it 

does not help in evaluating the performance of the classifiers in identifying missed WZ crashes. 

Therefore, we conducted a second evaluation which closely reflects the classifier’s ability to find 

missed WZ crashes from reported NWZ crash narratives. We ran all the classifiers on the 2019 

NWZ narratives (total 82,215 crash reports that were flagged as NWZ by the “CONSZONE” 

flag) and collected the top 100 narratives of each classifier ranked by the classification scores 

assigned by the classifier. We then manually evaluated the top 100 narratives of each classifier. 

The classifier that includes the maximum number of missed WZ crashes in its top 100 narratives 

is deemed as the best classifier. 

Figure 5-2 shows the accuracy of the seven classifiers for our second evaluation. As was 

described above, for each of the seven classifiers, we selected 100 narratives (7×100 = 700 

narratives in total) that had the highest classification scores and manually evaluated them.  
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Figure 5-2 Missed WZ Crash Detection Accuracy (%) 

It can be seen from Figure 5-2, Noisy-OR and GRU performed comparably, and each detected 

78 WZ crashes, the highest number of missed WZ crashes among all. The performance is 

moderate for LGR and SVM but is not satisfactory for MNB and RF. K-NN classifier is the 

worst. MNB and RF provided more than 100 cases with a classification score of 1.0, most of 

which were NWZ crashes. It should be noted that doing well in the second evaluation is more 

difficult than doing well in the first because in the second evaluation the methods had to 

consistently not misclassify a narrative as WZ crash with a high score for a total of 82,215 

narratives. Additional analysis is conducted for comparing unigram vs. unigram+bigram 

methods, identifying common cases from different models, and comparing the performance of 

Noisy-OR and GRU. 

 

5.1.5.1 Comparing Unigram and Unigram+Bigram Methods of Noisy-OR 

Section 5.1.4 explains that the unigram method may not be effective as expected for the Noisy-

OR method. Positive unigrams with high cf values may have low probability values because the 

same unigrams also appear in NWZ crash narratives. The problem can be mitigated by adding 

some context to the Noisy-OR approach, such as in the form of bigrams. The ordered positive 

bigram list provides more contextual information related to WZ. This section provides empirical 

evidence of using the Noisy-OR method as a text classifier to identify missed WZ crashes from 

narratives. The section also explores the classification outcomes of unigram and unigram+bigram 

when compared with gold label, or manual reviewing.  

The 100 narratives with the highest probability scores in each classifier were manually reviewed. 

The top 100 narratives of the unigram Noisy-OR classifier included 65 actual WZ crashes, while 
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the top 100 narratives of the unigram+bigram Noisy-OR classifier included 78 actual WZ 

crashes. The unigram+bigram noisy-OR narratives that were correctly classified contained more 

contextual positive bigrams such as “construction zone”, “under construction”, “construction 

worker” and “lane closed” with high df values in the WZ training set.  

A close review of 35 unigram Noisy-OR cases that were misclassified shows that they contain 

WZ-related positive unigrams such as “construction”, “barrels”, “attenuator”, “barricades”, 

“orange” and some noisy words such as “carrao”, “kampo”, “melloch”. These noisy unigrams 

have high df values in the WZ training set, indicating their popularity in the WZ crash narratives. 

On the contrary, the unigram+bigram Noisy-OR misclassified 22 cases from its top 100 

narratives. A close review of these 22 cases reveals that the unigram portion of unigram+bigram 

Noisy-OR contains few positive unigrams but with high probability scores; the bigram portion 

contains a longer list of positive bigrams with moderate probability scores. Thus, the comparison 

reaffirms that unigram+bigram Noisy-OR tackled the noisy tokens more successfully than 

unigram Noisy-OR. 

5.1.5.2 Analysis of Overlapping Cases for LGR, SVM, Noisy-OR and GRU 

It is expected that in our second evaluation, many top scored narratives will be common among 

the models. However, we were surprised to see that there were only 333 (about 48% of the 

selected 700 narratives) overlapping narratives (narratives found in top 100 of one classifier were 

also found in top 100 of other classifiers). By analyzing overlapping narratives, we can gain 

insights into the classification performance of different classification methods on the same 

narratives. Therefore, we conducted a comparison study on the overlapping cases identified by 

LGR, Noisy-OR, SVM and GRU; the remaining models were not included in this analysis due to 

their poor performances.  

According to Table 5-3, there are only 43 overlapping true WZ cases between Noisy-OR and 

GRU, which indicates that together, they found 70 different WZ cases (78-43=35 for each). 

Through the manual review, we found that these 70 cases contain reliable WZ keywords and are 

easy to classify, but when one method finds them among its top 100 narratives, the other does 

not. Another interesting observation is that out of the 47 true WZ cases of SVM, 45 overlap with 

LGR, and the model performance of SVM is very similar to LGR. There are 19 overlapping true 

WZ cases detected by all four classifiers (LGR, Noisy-OR, SVM and GRU) in which 

“construction zone”, “construction work”, and “construction lane” are the primary keywords 

(tokens).  

Table 5-3 Overlapping True WZ among LGR, Noisy-OR, SVM and GRU 

Classifier Total Overlapping Cases 

LGR Noisy-OR SVM GRU 
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Noisy-OR 78 45  78 41  43  

GRU 78 20  43  20  78 

LGR 51 51 45  45  20  

SVM 49 45  41  49 20  

 

By analyzing the 70 (i.e. 35+35) narratives as mentioned previously, we observed that the 

average length of narratives of Noisy-OR is longer than that of GRU.  Figure 5-3 shows the 

distribution of narrative lengths for GRU and Noisy-OR. The GRU uses almost all the words in 

the narratives whereas Noisy-OR consider only positive words (i.e. unigrams and bigrams). A 

longer narrative may have many positive and non-positive words. As GRU consider all the 

positive and non-positive words, the overall classification score of the narrative may not be high. 

On the other hand, as Noisy-OR only considers positive words, the classification score will be 

increased. For example, if a long narrative has an equal number of positive and negative words 

and suppose GRU regards them equally, the classification score will be 0.5 for GRU, whereas it 

will be more than 0.5 for Noisy-OR. In this way, a longer narrative with or without many 

negative words is handled better by Noisy-OR. The GRU classified smaller narratives more 

accurately than Noisy-OR. In our dataset, we found that the probability score of the word 

“constructions” is 0.89 in Noisy-OR. If a narrative contains this positive word only with other 

non-positive words, the classification score of Noisy-OR will be 0.89 and it will not be included 

in the top 100 narratives because the classification score is above 0.99 for the top 100 narratives 

of Noisy-OR. Therefore, the narrative is not present in the top list of Noisy-OR. On the other 

hand, GRU gave high weight to some of the WZ related words. Therefore, the narrative with 

those words has higher GRU scores and consequently they are found in the top list of GRU. In 

short, Noisy-OR is sensitive to the number of positive words but not negative ones, whereas 

GRU is less sensitive to the number of positive words but can be affected by negative words.  
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Figure 5-3 Distribution of Narrative Length 

5.1.5.3 Comparison between GRU and Noisy-OR Results 

Further investigation was done to the results of the top two performers: GRU and Noisy-OR. We 

found the top 100 cases of GRU result contained the word “construction” at least once in the 

naratives. We also found phrases in the narratives that lead to incorrect classification by GRU. 

These phrases can be categorized into two classes: mixed phrase and pesudo-WZ phrase. A 

mixed phrase refers to the combination of WZ related words and irrelevant words such as 

“johnson construction”, “construction at sarah's dance studio”, “construction on their new 

driveway”, and “construction building”. A pesudo-WZ phrase refers to the combination of WZ 

related words such as “construction barrels”, “construction equipment”, “construction barrier”, 

and “construction sign” but not in a work zone setting. Following are two example narratives that 

use pseudo-WZ phrases: 

Narrative 1:“Unit 1 was eastbound on i-94 in a snow storm lost control went into the median 

struck some construction barrels and ended up on the westbound side of i-94”. In this narratives, 

only the presence of construciton barrels does not warrant that there was a construction zone in 

the travel direction.  

Narrative 2: “Unit one was traveling westbound (north) on us 14 just south of sth 138.  Unit one 

struck a ladder which was present in the middle of the roadway.  Unit one continued to travel 

westbound, where he observed a white-colored pickup truck (with construction equipment in the 

bed) making a u-turn at the turn around on us 14 and netherwood st.  Unit one followed the 

pickup truck after turning around, and later confronted the driver of the pickup truck over the 

ladder.  The driver of the pickup truck denied the ladder was his.  I was able to speak with the 

driver of the pickup truck a few days later, and he denied the ladder was his.  He advised he 

works for a roofing business and owns ladders significantly larger than the one that was present 
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in the roadway”. In this narrative, it is clear that the construction equipment was loaded in a 

pickup but the accident has nothing to do with a work zone.  

Among the 78 correctly classified narratives of Noisy-OR, 75 narratives contain the word 

“construction”. Among the 22 misclassified narratives of Noisy-OR, the word “construction” 

appeared in the 9 narratives, and the words “barrels”, “barrier”, and “orange” appeared several 

times. The pesudo-WZ phrase “construction barrels” appeared in 7 narratives. Since Noisy-OR is 

a keyword-based classifier and does not use contextual information for classification, it fails to 

correctly classify these narratives. Furthermore, we found that the words “lane”, “closed”, 

“attenuator”, “orange”, and “barrel” appeared several times in the remaining  misclassified 

narratives.   

The above analysis shows that both GRU and Noisy-OR perform well, but their classification 

mechanisms are different. The reasons of misclassifications are very similar for some of the 

cases (e.g., presence of pesudo-WZ phrase). However, it is difficult to select the best classifier 

based on manual review of the top 100 results of GRU and Noisy-OR. That is why, we expanded 

the sample size from top 100 to top 200. Figure 5-4 shows the detection rate of missed WZ 

crashes in an interval of 50 data points with a maximum of 200 narratives. We found that GRU 

detected 146 missed WZ crashes whereas Noisy-OR detected 137 from their top 200 narratives. 

The detection rate of GRU fluctuates with the decrease of the classification score, but for Noisy-

OR, it decreases with the decrease of the classification score. 

5.1.6  Extended Analysis of Unigram+Bigram of Noisy-OR 

Further analysis was performed to quantify the classification accuracy rate against the case rank 

of the unigram+bigram method. Starting from the highest-ranked cases, the number of correctly 

identified WZ crashes is counted over the 50-case intervals, as shown in Figure 5-5. 
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Figure 5-5 Accuracy of (Unigram+Bigram) Noisy-OR 

From  Figure 5-5, two observations can be made based on the 450 cases reviewed: a) more than 

50% of cases correctly classified till the fifth interval (201-250), and b) the model performance 

degrades rapidly from 80% in the first interval [0-50] to 12% in the last interval [401-450]. The 

fitted quadratic Equation has a R2 value of 0.9668, suggesting a strong and consistent trend for 

the descending accuracy rate. The findings are good news for an agency who wants to estimate 

the effort of a manual review for missed WZ crashes. 

The probabilistic distribution of narrative length was plotted for WZ and NWZ crashes, 

respectively, in Figure 5-6. The distribution was inspired by a study that shows that narratives 

not designated by officers as speed-related crashes have a longer length on average than non-

speed related crashes (Fitzpatrick et al. 2017). Figure 5-6 shows that the narrative length of 

actual NWZ crashes is approximately normally distributed, while missed WZ crashes are slightly 

skewed toward the left. The two distributions are statistically different at a 5% level of 

significance (two sample t-test, p=<0.0001). 
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Figure 5-6 Histogram of Narrative Length for a) NWZ and b) Missed WZ 

Moreover, the average narrative length of reported WZ crashes is 104, and Std. is 68 (sample 

size:1989), which is a statistically significant difference between NWZ (two sample t-test, 

p=<0.001) and missed WZ (two sample t-test, p=<0.001). Though it is expected that long 

narratives would have more positive tokens than short narratives, no correlations are observed 

between the length of narratives and the number of positive tokens for reported WZ and NWZ 

and missed WZ. In other words, there is not enough evidence to claim that long narratives tend 

to classify crashes more accurately than short narratives. 

 

5.1.7 Summary of Observations 

We obseve that there are two main challenges in identifying missed WZ crashes from narratives. 

The first challenge is due to the nature of WZ crash narratives. A crash narrative may be very 

long with several parts irrelevant to WZ, but if it mentions a word or a few words, such as 

“construction area”, at just one place then that would make it a WZ crash narrative. In additon, 

there are not many words or phrases which are indicative of WZ. This is typically not how most 

classes are in text classification tasks. For example, for a classification task to classify a news 

article as belonging to politics or not, most parts of the article will indicate that it belongs to 

politics and there will be plenty of words that will be indicative of that class. Many popular text 

classification statistical methods, such as SVM, LGR and MNB, work well with the latter types 

of tasks, because they tend take into account a large number of features to make their 

classification decisions.  On the other hand, Noisy-OR can narrow down to only a few indicative 

words and only looks for their presence, and because it is a probabilistic “Or”, presence of any 

good indicative word is sufficient for it to classify a narrative as WZ. This is one reason why 

Noisy-OR worked well on our task. GRU’s learning mechanism is complex and not easily 

interpretable, but it appears from the results that it also learned to base its decision on the 

presence of a few indicative words.  

Average: 162 

Std Dev: 80.66 

Sample size: 249 

Average: 129 

Std Dev: 78.45 

Sample size: 201 
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One more reason the nature of WZ crash narratives is different from typical text classification 

classes is that they can very well contain what can be in NWZ crash narratives. This is because 

what happens in an NWZ crash can also happen in a WZ area thus making it a WZ crash. In 

contrast, for example, a non-political news article will be always very different from a politcal 

news article. In other words, there are really no negative words that indicate that a narrative is 

not WZ. However, methods such as LGR and SVM heavily use negative features (e.g. Figure 

5-1) which possibly confuse the methods on this task. On the other hand, Noisy-OR strictly uses 

only positive indicators and hence is not affected. It appears from the earlier discussion related to 

the lengths of narratives that GRU is affected to a some extent by the negative features.  

The second challenge is due to the way we automatically created the training dataset that led to 

large noise as was pointed out earlier. An estimated 70% of narratives flagged as WZ do not 

contain anything that indicates WZ crash. This adversely affects most of the methods because 

they are not designed to handle so much noise. In contrast, this is unlikely to affect Noisy-OR’s 

top unigrams and bigrams as long as there are sufficient true WZ narratives flagged as WZ. From 

the results, it appears that GRU was not much affected by this noise. There is also noise because 

many narratives flagged as NWZ are, in fact, the missed WZ crashes. Although this can 

potentially affect all the methods, given that a small percentage of all crashes are WZ, the extent 

of this noise is small. Although the above observations are specific to the task of identifying 

missed WZ crashes, it is likely that they will be true for the tasks of identifying other missed 

causes of crashes. To summaize the results, among the seven classifers tested, MNB, RF and K-

NN provide poor classifiction performance with our dataset. Although the AUC score, and the 

coefficients of WZ-related words of LGR and SVM seem promising, the performance of LGR 

and SVM in detecting missed WZ crashes is not satisfactory for the reasons mentioned earlier. 

GRU and Noisy-OR are the two best performers, and their results of recovering missed WZ 

crashes from the reported NWZ crash narratives are comparable. Based on manual verification of 

the first 200 narratives of each model, GRU detected 146 WZ crashes, 9 more WZ crashes than 

Noisy-OR.  Noisy-OR can handle longer noisy narratives better than GRU. On the other hand, 

compared to Noisy-OR, GRU can handle shorter narratives better. The word probability of a 

positive word in Noisy-OR is prepared in such a way that if an important positive keyword is 

very frequent in the NWZ narratives, the word probability score is decreased. Therefore, 

although some short narratives of missed WZ crashes have obvious indication of WZ crashes, 

Noisy-OR may not be able to generate higher classification scores for the narratives. On the 

other hand, GRU does not emphasize much on the number of occurrenes of keywords in the 

narratives. Instead, it uses the context of the words through its sequence processing 

mechanism.Therefore, it is able to correctly classify short narratives. However, GRU is not able 

to generate  high classification scores for the longer narratives. This indicates that GRU cannot 

handle narratives that have a few positive words with many negative  words. But GRU has the 

advantage that it employs word embeddings which enables it to treat semantically similar words 

similarly in its model (for example, it will treat “barricade” and “roadblock” similarly). But 

Nosiy-OR treats every word distinctly whether they are semantically similar or not. On the other 
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hand, Noisy-OR is simple, computationally fast and interpretable. Whereas, GRU algorithm is 

very complex in nature and requires fine-tuning several hyperparameters. It also requires 

significant amount of time to train the model. Therefore, there is a trade-off in choosing the best 

model between Noisy-OR and GRU.  

Considering model complexity and computational power, the unigram+bigram noisy-OR method 

is an effective and efficient method for classifying text and recovering missed WZ crashes for 

real-time application. According to Figure 5-5, a review of the top 450 cases of the 

unigram+bigram noisy-OR identified 201 WZ crashes as missed, which is more than 8% of 

reported WZ crashes from 01/01/2019 to 10/31/2019. Moreover, the decreasing trend of finding 

missed WZ crashes suggests the chance may be 12% or lower after the first 450. Additionally, 

450 crashes is a tiny fraction of the pool of potentially missed WZ crashes (i.e., 125,509 NWZ 

crashes in 2019), which is very helpful to an agency that wants to prioritize and estimate the 

level of effort of a manual review.  

 

5.1.8 Spatial-Temporal Analysis of Missed WZ Crashes  

Further analysis was conducted on the crash time and location for a better understanding of the 

circumstances under which a WZ crash is missed. Figure 5-7 shows the distribution of reported 

WZ and missed WZ confirmed in this study by time of day, day of week, and month of year. 
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Figure 5-7 WZ Crash Analysis by a) Hour  b) Day and c) Month 

In 2017 to 2019, 70.96% of all reported WZ crashes and in 2019, 73.13% of the missed WZ 

crashes identified in this study occurred during daylight hours from 8 a.m. to 6 p.m., as shown in 

Figure 5-7 (a). Among daytime WZ crashes, a high percentage of missed cases occurred in the 

afternoon when traffic is busiest, from 4 p.m. to 5 p.m. It is plausible that crashes are missed 

when traffic is high or when construction activities are intense. The day of week distribution 

suggests that the WZ crashes are probably missed throughout the week, especially on Monday 

and Saturday, as shown in Figure 5-7 (b). Figure 5-7 (c) also displays the monthly distribution of 

reported WZ crashes versus missed WZ crashes, showing that a high percentage of missed cases 

0.00

3.00

6.00

9.00

12.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23P
er

ce
n

ta
g

e 
o

f 
R

ec
o

rd
s(

%
)

(a) Hours

0

5

10

15

20

25

MON TUE WED THU FRI SAT SUNP
er

ce
n
ta

g
e 

o
f 

R
ec

o
rd

s(
%

)

(b) Days

0

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P
er

ce
n
ta

g
e 

o
f 

R
ec

o
rd

s(
%

)

(c) Months

Reported WZ (%) Missed WZ(%)



 

37 

 

are observed in the summertime, especially in July and August when construction activities are 

extensive and intensive. 

Figure 5-8 shows the distribution of missed WZ crashes compared to reported WZ crashes by 

highway class. The evidence shows that most missed WZ crashes occurred in urban areas, 

including urban city streets (43.11%), urban state highways (16.89%) and urban interstate 

highways (15.33%). The interstate highway system, both urban and rural, has the best 

performance in terms of a low ratio of missed crashes to reported crashes. The next best 

performance is from state highways, where the ratio is close to 1. City streets have the highest 

ratio of missed crashes to reported crashes, particularly urban city streets which have only 20% 

of the total reported WZ crashes but make up 43% of missed WZ crashes identified in this study. 

Cheng et al. stated that construction work zones are usually assumed to be long term works, but 

maintenance or utility works are usually short term and temporarily, which may not be known to  

driver in advance (Cheng et al. 2012). Since many crashes on urban streets involve utility work 

zones, it is plausible that police may not consider those as construction zone related. 

 

Figure 5-8 WZ Crash Analysis by Highway Class 

Comparisons were conducted for other structured data fields, including weather conditions, 

pavement conditions, light conditions, and injury severity. The results show similar distributions 

between all reported WZ crashes and missed WZ crashes, mainly due to the lack of variety since 

most WZ crashes, reported or missed, occur during clear or cloudy weather, on dry pavement, in 

the daytime, and involve less severe injuries. 

An analysis of missed cases suggests the 73.13% of the missed WZ crashes identified in the 

study occurred from 8 a.m. to 6 p.m. with a high percentage in the afternoon from 4 p.m. to 5 

p.m. A high percentage of WZ crashes that are misclassified are observed in July and August 

when the construction activities are extensive and intensive. 43% of the missed WZ crashes 

identified in this study occurred on urban city streets.  

 

0

10

20

30

40

50

City

Steet

Rural

County

Trunk

Rural

Interstate

Highway

Rural

State

Highway

Rural

Town

Road

Rural

City

Street

Urban

County

Trunk

Urban

Interstate

Highway

Urban

State

Highway

Urban

Reported WZ(%) Missed WZ(%)



 

38 

 

5.2 Distracted and Inattentive Driving Crashes 

There are many reasons behind car crashes, including driver distraction and inattentiveness. In 

Wisconsin, USA alone, from 2017 to 2019 the percentage of crashes due to distraction and 

inattentiveness increased from 8.28% to 12.41%, according to the crash statistics from 

Wisconsin reportable crashes. When a driver fails to pay sufficient attention to perform basic 

tasks for safe driving, the driver is called inattentive, and the driving is called inattentive driving. 

While there is only action or activity behind inattentive driving, distracted driving involves both 

action and a source of distraction. 

The definition and categorization of driver distraction and driver inattention can be referenced 

from existing sources and research. (R. Dewar and P. Olson 2007) stated that “the essential 

distinction between inattention and distraction is that inattention is internal to the driver and non-

compelling, whereas distraction is external to the driver and compelling”. (Regan, Lee, and 

Young 2008) stated that the absence (in the case of driver inattention) of a competing activity is 

the key factor in differentiating driver distraction from driver inattention. (Hoel, Jaffard, and Van 

Elslande 2010) distinguished driver inattention from driver distraction according to the nature of 

the competing activity. For driver distraction this is any external non-driving-related activity and 

for inattention, this activity is preoccupation in internalized thought. (Regan, Hallett, and Gordon 

2011) defined distracted and inattentive driving, found relation between them, and made a 

taxonomy for them. They defined driver inattention as “insufficient or no attention to activities 

critical for safe driving” and categorized driver distraction as another form of driver inattention. 

According to the National Highway Traffic Safety Administration (NATSA), distracted driving 

is defined as “Distracted driving is any activity that diverts attention from driving, including 

talking or texting on your phone, eating and drinking, talking to people in your vehicle, fiddling 

with the stereo, entertainment or navigation system — anything that takes your attention away 

from the task of safe driving” (NHTSA 2021). In summary, driver distraction involves a 

triggering event, a competing activity; where the competing activity is externally generated and 

may lead to attention shift. 

Though distracted driving is considered as a specific type of inattentive driving (NHTSA 2010), 

the growing crash reports due to distraction lead us to consider them separately. Distracted 

driving involves some internal (i.e., inside the vehicle, for e.g., phone, radio, gps, etc.) or 

external sources, where inattentive driving does not involve any sources. It is important to 

differentiate the two types of crashes because knowing the source of distraction can help us take 

appropriate intervention. Furthermore, specific safety treatments for distracted or inattentive 

driving related crashes can be implemented for improved effectiveness.  
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5.2.1 Data Collection 

In this study, crash reports were acquired from the Wisconsin Department of Transportation 

(WisDOT) through the WisTransPortal data hub, including all the crash narratives. We collected 

data during a transitional period of the database and observed several changes in the data 

elements, which are described below. 

In the dataset before 2019, the field "DISFLAG" referred to all distracted and inattentive driving 

crashes (DOI). Therefore, the narratives that marked under DISFLAG flag could not describe 

which one was distracted and which one was inattentive narrative. In 2018, new data elements 

were added to the database to help separate distracted driving from inattentive driving. The 

implementation was rolled out gradually as law enforcement agencies upgraded their computer 

systems. Therefore, the database was not complete during that transitional time. In 2020, we 

collected the data for the year 2017 to 2019 and found that there were 32,050 DOI crashes. In 

order to prepare training dataset for DD and ID cases, we had to manually annotate some of the 

DOI cases as DD, ID, DD+ID and ND cases. However, manually separating DD and ID from the 

huge DOI data set is not an effective method. It is expected that data collected in a later time 

after the crash data improvement project such as 2019 to 2021 data are far better in 

distinguishing DD and ID from DOI with specific elements. That is why, after having a complete 

dataset for the years 2019 to 2020 and a partially complete dataset for the year of 2021 (till June 

16), the distracted and inattentive crashes are populated based on the following query.  

• Distracted Crash when {DISTACT [1,2] are not “Not Distracted” and not blank} & 

{DISTSRC [1,2] is not “Not Applicable”) (Not Distracted) and not blank} then it is 

Distracted crash, otherwise not  

• Inattentive Crash when {ID} in DRVRPC [1,2] [A, B, C, D] then it is Inattentive crash, 

otherwise not 

The field “DISTACT” provides the actions of drivers such as talking, listening, manipulating or 

other actions. The field “DISTSRC” provides the source of distraction such as hands-free mobile 

phone, hand-held mobile phone, vehicle-integrated device, or other source of distractions. The 

“DRVRPC” provides both inattentive driving and distracted driving parameters.  

 

  

Table 5-4 presents the overall crash statistics after populating DD and ID crashes from 2019 to 

2021. We found 51,405 DD cases and 17,791 ID cases in 2019-2020 dataset. From the 

experience of work-zone crash classification (section 5.1Work Zone Crashes), it can be said 

that both datasets represent a good amount of data for using as training dataset in Noisy-OR. 

Therefore, we developed individual classifiers for both DD and ID cases. 
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Table 5-4 Crash Statistics 

Year Type Distracted (%) Inattentive (%) 

2019 

Reported 27,135 (21.16%) 9,994 (7.79%) 

Not Reported 101,074 (78.84%) 118,515 (92.21%) 

Total 128,209 (100%) 128,209 (100%) 

2020 

Reported 24, 270 (23.9%) 7,797 (7.68%) 

Not Reported 77,239 (76.1%) 93,712 (92.32%) 

Total 101,509 (100%) 101,509 (100%) 

2021 (partial 

dataset) 

Reported 10,905 (23.72%) 3,612 (7.86%) 

Not Reported 35,077 (76.28%) 42,370 (92.14%) 

Total 45,982 (100%) 45,982 (100%) 

 

For the DOI classifier, the DOI cases can be prepared from the DD and ID narratives in two 

ways: (1) either distracted or inattentive cases + both distracted and inattentive cases (2) both 

distracted and inattentive cases. Since our dataset is very noisy like work zone cases, the former 

method (either distracted or inattentive cases) will add noisy narratives to the training set from 

DD and ID cases. On the other hand, the other method (both distracted and inattentive cases) will 

reduce the noisy narratives in the dataset because it is unlikely for a narrative without any DD or 

ID related words to be reported as a both inattentive and distracted case. Both methods were 

used; and the one that provided higher accuracy to classify DOI cases was chosen. 

We started with the data from 2019-2020 as training data for all the classifiers. However, the 

classifiers for the cascade classifiers (models) cannot be tuned because the training data is very 

noisy (the narratives do not contain any DD, ID or DOI related words). Alternatively, we 

randomly selected 300 narratives for DOI, 500 narratives for DD and 500 narratives for ID from 

2018-2019 dataset and manually annotated them to find the optimal threshold values of the 

classifiers (the details are described later). The use of manually annotated data ensures that these 

crashes are properly classified. 

We used 2020 dataset as the preliminary test data to investigate how well the classifiers are 

trained. We took the top 100 results of each classifier, and manually investigated them to get 

deeper insight about the classifiers. The 2021 dataset was used as final test dataset for all the 

classifiers to investigate how well the classifiers performed in a new dataset. 

After obtaining the DOI, DD and ID classifier, we prepared cascades classifiers (models) by 

combining them, as described in section 4.7.3. To prepare the test data for the models, the 

distracted (DD) and inattentive (ID) cases was prepared by manually reviewing 300 narratives 

(reported and unreported) that were randomly taken from 2018-2020 dataset. We found 93 
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distracted (DD) and 87 inattentive (ID) and 120 Neither (NDOI) cases. To make a balance 

dataset, we selected 90 Neither (NDOI) cases randomly from the 120 NDOI cases. 

The following three sample crash narratives were chosen randomly from the dataset to illustrate 

the structure of crash narratives; the first one is distracted driving (DD), the second one is 

inattentive driving (ID), and the third one is NDOI. 

• DD crash narrative example: Both units were traveling w/b on w Ryan Rd and 

approaching 22nd St when unit #2 stopped at the red light. The driver of unit #1 stated 

that she was on her way to a job interview and looked at her GPS, when she looked back 

up she thought it was a green light, but it was actually a red light. Unit #1 was not able to 

stop in time and struck unit #2 in the rear bumper, causing minor damage to unit #2 and 

disabling damage to unit #1. B&b towed unit #1. 

• ID crash narrative example: Unit one was driving eastbound on interstate 94 in the left 

lane. The vehicle deviated from its lane crossing the fog line and striking traffic cones on 

the median shoulder. Upon striking the cones the vehicle swerved back onto the road but 

over corrected. It caused the vehicle to spin to the right going into the right lane. The 

vehicle the left the roadway onto the right shoulder sideways and then turned completely 

where the rear of the car struck a dividing fence. The dividing fence is what separates the 

interstate from a corn field.  When I asked the driver what happened he stated he was 

tired and dozed off. When he fell asleep for that split second, he had swerved to the left 

going off the road. 

• NDOI crash narrative example: On 01/05/2019 at 2018 hours, I responded to report of a 

two vehicle hit and run crash. I met the reporting party at her residence. The RP, driver 

of unit 1, was traveling sb on 17th av, and made a left turn onto Sherman St. Unit 1 was 

struck by a vehicle traveling nb on 17th av. The striking vehicle did not stop. Unit 1 drove 

the vehicle home before calling. She believed the striking vehicle was a dark colored 

sedan, but had no further information. Unit 1 believed she had a green light but did not 

know if she had a green arrow. Damage to right rear of unit 1. Observed some small 

plastic pieces scattered around intersection, but no identifying features for the striking 

vehicle. Photographs attached via axon capture. 

 

5.2.2 Result and Analysis 

In this section, the unigrams (U), bigrams (B), and trigrams (T) with the highest probability 

scores and thus strong indicative of a DOI, a DD, or an ID narrative are presented. Next, the U, 

U+B, and U+B+T approaches are compared, and the best one is used in the hierarchical and 

priority models. Finally, the results of models with DOI, DD, and ID classifiers are calculated 

and compared.  
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5.2.3  Unigram, Bigram, and Trigram Probability Analysis  

Table 5-5 Table 5-5to Table 5-7 show the top 25 unigrams, bigrams, and trigrams with their 

corresponding probability, positive count, and negative count for DOI, DD, and ID. In these 

tables, DOI/NDOI means word count in DOI vs. word count in non-DOI cases (NDOI); same for 

DD/NDD and ID/NID. All calculations were performed by the Equation of weighted count 

probability (Equation 3). It is clear that the method successfully obtained the most relevant 

unigrams, bigrams, and trigrams for each narrative type.  

Table 5-5 lists the most important words that are prepared from distracted and inattentive 

narratives and that have the highest probability scores. For example, the words “inattentive” and 

“distracted” has a probability of 0.99 and 0.97, respectively. With the Equation of simple count 

probability, however, the two words have a lower probability of 0.81 and 0.69, respectively 

(calculated separately, not shown in Table 5-5). Therefore, the Equation of weighted count 

probability works well to extract the most critical unigrams/bigrams/trigrams and gives them 

high weights (probability). Some common phrases from the DOI narratives are (based on our 

manual review): not looking on the road, not paying attention, inattentive driving, operating 

phone/radio/GPS, reaching for drink/dropped phone or object, adjusting radio/visor, etc. Overall, 

Table 5-5 shows a good reflection of these phrases in all unigrams, bigrams, and trigrams. With 

these high probability scores of essential words, a test narrative will be given a high Noisy-OR 

score when these words are present and thus classifying DOI cases from NDOI cases.  

Table 5-5 Top 25 Uni-, Bi, and Tri-grams for the DOI Classifier 

Unigram Pro DOI/N

DOI 

Bigram Pro DOI/NDOI Trigram Pro DOI/ND

OI 

inattentive 0.9913 1632/39

1 

inattentive 

driving 

0.9907 1491/351 for inattentive 

driving 

0.9888 1266/298 

distracted 0.9727 931/409 for 

inattentive 

0.9890 1290/303 cited for inattentive 0.9726 662/137 

paying 0.9501 601/323 looked down 0.9813 845/183 inattentive driving 

unit 

0.9314 383/78 

cell 0.9266 443/256 was 

distracted 

0.9610 544/128 not paying attention 0.9311 412/167 

looking 0.9222 1557/15

50 

looked up 0.9581 599/250 citation for 

inattentive 

0.9231 360/86 

gps 0.8555 256/150 distracted by 0.9513 480/124 was looking at 0.9138 373/194 

phone 0.8516 1557/22

61 

down at 0.9496 527/228 when he looked 0.9109 408/278 

radio 0.8263 355/468 paying 

attention 

0.9472 561/295 he was looking 0.9085 379/235 

reached 0.8244 267/282 not paying 0.9377 439/173 was distracted by 0.9081 319/60 

looked 0.7987 2878/50

72 

looking at 0.9375 590/398 looked down at 0.9049 310/41 

asleep 0.7888 473/800 was looking 0.9370 918/757 was not paying 0.8895 299/130 
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eyes 0.7706 318/525 cell phone 0.9279 432/229 he looked down 0.8826 275/71 

dropped 0.7649 195/222 his phone 0.9274 413/196 when she looked 0.8752 285/159 

reaching 0.7362 159/154 looked away 0.9271 376/103 she was looking 0.8501 253/162 

grab 0.7345 142/48 phone and 0.9160 391/220 looked down to 0.8477 227/40 

floor 0.7075 149/181 looked back 0.9098 429/319 driving unit 1 0.8441 298/301 

notice 0.7006 254/512 looking 

down 

0.9056 317/79 looked away from 0.8413 220/35 

bottle 0.6734 114/84 her phone 0.8994 318/133 inattentive driving 

and 

0.8378 218/53 

texting 0.6708 108/27 driving unit 0.8958 470/443 he looked up 0.8378 224/96 

talking 0.6599 144/256 at his 0.8823 419/413 was looking down 0.8127 195/50 

watching 0.6507 136/243 at her 0.8696 349/330 down at his 0.8093 191/34 

attention 0.6435 968/252

2 

he looked 0.8382 951/1431 she looked down 0.8054 188/35 

inattentively 0.6239 86/22 eyes off 0.8330 213/50 paying attention and 0.7942 189/112 

cigarette 0.6145 82/30 attention to 0.8320 226/133 looking down at 0.7911 177/32 

coffee 0.6141 88/95 she looked 0.8277 687/1052 she looked up 0.7896 178/59 

 

Table 5-6 shows top unigrams, bigrams, and trigrams related to the DD classifier. From the 

unigram column, we can see that, except for some unigrams like inattentive, asleep, etc., all the 

words are a strong indicator of distracted driving like distracted, GPS, cell, radio, phone, 

reached, talking, dropped, grab, reaching, floor, bottle, etc. Though “distracted” has the highest 

probability, the word “inattentive” has the second-highest probability given that police officers 

do not differentiate between distracted driving and inattentive driving on their written narratives. 

From the manual review, we frequently noticed that even when a narrative presents a distracted 

driving case, the last line of the narrative is something like “unit # is cited for inattentive 

driving.”. The frequent appearance of “inattentive” makes it very difficult to train a stable and 

effective DD classifier. The same analysis is true for the bigrams and trigrams of Table 5-5.  

Table 5-6 Top 25 Uni-, Bi, and Tri-grams for the DD Classifier 

Unigram Pro DD/NDD Bigram Pro DD/NDD Trigram Pro DD/NDD 

distracted 0.9659 1906/523 looked down 0.9677 1450/266 for inattentive 

driving 

0.9542 1912/662 

inattentive 0.9560 2495/907 inattentive 

driving 

0.9583 2284/786 cited for 

inattentive 

0.9222 987/349 

paying 0.9107 1071/479 for inattentive 0.9546 1953/678 was distracted by 0.8920 628/94 

looking 0.8898 3025/1943 was distracted 0.9511 1080/197 not paying 

attention 

0.8830 708/275 

cell 0.8875 756/309 distracted by 0.9410 953/174 was looking at 0.8772 673/258 

phone 0.8453 3247/2559 looked up 0.9329 1061/340 when he looked 0.8704 741/363 

gps 0.8448 529/181 down at 0.9136 861/286 inattentive driving 

unit 

0.8642 586/192 
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reached 0.8132 556/330 looking at 0.9102 1089/495 citation for 

inattentive 

0.8525 548/181 

radio 0.8116 713/522 paying 

attention 

0.9075 1004/443 he was looking 0.8505 646/328 

looked 0.7990 6103/5689 looked away 0.9029 696/147 looked down at 0.8497 498/73 

eyes 0.7851 726/609 his phone 0.9017 767/252 was not paying 0.8352 529/220 

talking 0.7500 413/280 was looking 0.8982 1725/1006 when she looked 0.8284 507/208 

dropped 0.7391 386/259 not paying 0.8902 748/288 he looked down 0.8211 446/104 

grab 0.7193 289/66 cell phone 0.8876 731/281 she was looking 0.8069 472/222 

attention 0.7122 2371/2788 phone and 0.8858 711/266 he looked up 0.7842 393/135 

reaching 0.7113 313/179 looked back 0.8827 822/396 driving unit 1 0.7813 558/417 

asleep 0.7053 1057/1231 her phone 0.8565 553/171 looked down to 0.7812 368/57 

notice 0.6960 547/594 looking down 0.8558 530/126 looked away from 0.7763 361/58 

floor 0.6876 296/202 at his 0.8420 769/490 she looked down 0.7521 327/52 

ejected 0.6813 366/350 at her 0.8307 639/383 paying attention 

and 

0.7462 352/169 

owi 0.6646 1382/1804 she looked 0.8234 1433/1178 inattentive driving 

and 

0.7460 334/119 

alcohol 0.6638 507/603 driving unit 0.8222 821/605 was looking down 0.7443 323/85 

bottle 0.6547 228/104 he looked 0.8189 1920/1640 he looked back 0.7300 331/168 

seat 0.6512 1927/2611 eyes off 0.7818 375/87 she looked up 0.7245 299/86 

def 0.6452 724/959 attention to 0.7768 400/180 down at his 0.7229 292/58 

 

Table 5-7 shows top unigrams, bigrams, and trigrams related to the ID classifier. From the 

unigrams column of Table 5-7, we see the reflection of the previous statement. The same 

observation is valid for the bigrams and trigrams column of Table 5-7. One important 

observation is that the highest probability for the unigram and bigram “inattentive” is 0.9642 and 

0.9623, respectively; which is higher than that in Table 5-6. This indicates that the DD classifier 

is a less effective classifier to separate DD cases from ID cases with the presence of ID classifier. 

Table 5-7 Top 25 Uni-, Bi, and Tri-grams for the ID Classifier 

Unigram Pro ID/NID Bigram Pro ID/NID Trigram Pro ID/NID 

inattentive 0.9642 2148/1254 for 

inattentive 

0.9623 1665/966 for inattentive 

driving 

0.9622 1630/944 

paying 0.8816 757/793 inattentive 

driving 

0.9623 1926/1144 cited for 

inattentive 

0.9531 874/462 

distracted 0.8435 1045/1384 looked down 0.9180 928/788 inattentive 

driving unit 

0.9176 498/254 

cell 0.8423 496/569 not paying 0.8894 554/482 citation for 

inattentive 

0.9003 455/274 

looking 0.8070 1950/3019 down at 0.8811 585/562 not paying 

attention 

0.8819 520/463 

asleep 0.8022 904/1384 paying 

attention 

0.8798 709/738 looked down at 0.8558 342/229 
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gps 0.7400 287/423 looked up 0.8797 689/712 he was looking 0.8504 472/502 

reached 0.7020 315/571 was 

distracted 

0.8660 613/664 was not paying 0.8481 389/360 

phone 0.6902 1855/3951 looking 

down 

0.8529 364/292 was looking at 0.8340 437/494 

radio 0.6860 409/826 distracted by 0.8503 530/597 inattentive 

driving and 

0.8286 284/169 

dropped 0.6755 232/413 cell phone 0.8486 484/528 he looked down 0.8286 308/242 

grab 0.6699 160/195 driving unit 0.8470 634/770 when he looked 0.8278 493/611 

reaching 0.6569 184/308 looked away 0.8468 420/423 was distracted by 0.8215 353/369 

watching 0.6436 198/376 was looking 0.8425 1167/1564 driving unit 1 0.8113 420/530 

looked 0.6432 3495/8297 looking at 0.8347 687/899 when she looked 0.8025 334/381 

texting 0.6426 126/104 his phone 0.8341 469/550 looked away from 0.7885 243/176 

eyes 0.6347 402/933 her phone 0.8240 356/368 looked down to 0.7881 244/181 

bottle 0.6242 134/198 phone and 0.8187 437/540 she was looking 0.7843 313/381 

floor 0.6230 170/328 fell asleep 0.8032 689/1024 he looked up 0.7803 263/265 

notice 0.6162 336/805 looked back 0.8025 506/712 was looking down 0.7736 230/178 

inattentively 0.6158 104/42 eyes off 0.7850 250/212 down at his 0.7677 215/135 

tired 0.6034 160/332 at his 0.7791 496/763 he fell asleep 0.7641 304/409 

cigarette 0.5946 97/93 attention to 0.7747 273/307 paying attention 

and 

0.7578 246/275 

adjust 0.5812 92/111 at her 0.7641 402/620 looking down at 0.7445 195/126 

coffee 0.5808 102/164 he fell 0.7532 310/448 she looked down 0.7441 205/174 

 

5.2.4 Selection for DOI, DD, and ID Classifiers 

In this section, distracted and inattentive versus neither classification using the DOI classifier, 

distracted versus non distracted classification using the DD classifier, and inattentive versus non 

inattentive  classification using the ID classifier are performed. A threshold value for probability 

scores was used to exclude unigrams, bigrams, and trigrams with low probability scores. For 

example, if a threshold value of 0.50 is set in the U+B approach, then all the unigrams and 

bigrams having probability scores (by Equation 1 or 3) less than 0.50 are not considered. The 

best threshold value for each classifier was determined by searching in the range of 0.00 to 0.90 

with 0.05 increment. We examined three metrics-Accuracy, AUC and ROC - to find the best 

threshold. The accuracy value is the ratio of the number of narratives that are correctly classified 

divided by the total number of narratives. We used top 100 results of each classifier as correctly 

classified positive cases to find the best thresholds. The ROC is a graph that shows the 

performance of a classification model over the entire range of sensitivity and specificity, and 

AUC measures the area underneath the ROC curve. Among the three, we found Accuracy to be 

the best metric. Therefore, we used Accuracy value as the evaluation metric for comparing the 

performances of the classifiers. 

For the DOI classification, when applied on the 300 manually reviewed dataset described earlier, 

among U, U+B, and U+B+T, the U+B approach (by both simple Count and weighted count 
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probability Equations) performs the best, and U+B+T performs the worst. We achieved the 

highest accuracy from the dataset that was prepared by the distracted AND inattentive cases. The 

U+B+T contains trigrams, and three consecutive words are generally rare, and those found in the 

training data are unlikely to repeat in the test narratives. For example, “inattentive in his” is a 

trained trigram with 0.93 probability, but the possibility of these exact three words appearing in a 

test narrative in the same order is low. The test narrative may have trigrams like “inattentive in 

her”, “inattentive on his”, “inattentive because his”. For this reason, the U+B+T approach does 

not work well as expected, but with a large enough training dataset, it may perform better. With 

the Equation of simple count probability, we achieved the best result using the U+B approach 

with a 0.35 cutoff value. With the Equation of weighted count probability, we achieved the best 

result using the U+B approach with a 0.5 cutoff value (Figure 5-9). 

Next, the U+B approach using both Equations were applied to the 2020 and 2021 NDOI test set. 

As mentioned earlier, we used top 100 results of 2020 that were manually reviewed to check the 

performance of classifiers in the training set. To investigate the performances in the unseen 

dataset, the top 300 results of 2021 of all the classifiers were manually reviewed and verified. 

The breakdown of the top 300 manual reviews of 2021 using weighted count probability is 

shown in Figure 5-9. The accuracy of classifying DOI cases from NDOI cases is 78% using the 

weighted count probability. Figure 5-9 shows that the DOI cases have a consistent rate in the top 

300 results. Considering novelty and brevity, only graphs for Equation 3 are presented in the 

following sections. 

 

 

Figure 5-9 DOI Classifier Using the U+B Approach (Eq. 3, 0.50 Cutoff Threshold) 
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From the Accuracy values obtained on the 500 manually reviewed dataset (described earlier) for 

the DD classifier, among U, U+B, and U+B+T, U+B approach for both simple count probability 

and weighted count probability perform the best and U+B+T performs the worst. The reason 

behind that, as was for the DOI classifier, is that U+B+T contains trigrams, and three 

consecutive words found in training data are unlikely to repeat in the test narratives. With the 

Equation of simple count probability, we achieved the best result using the U+B approach having 

a 0.75 cutoff value. With the Equation of weighted count probability, we achieved the best result 

using the U+B approach having a 0.65 cutoff value.  

Next, this U+B approach using both Equations are applied to the 2020 and 2021 NDD dataset 

and the top 100 results of 2020 and 300 result of 2021 were manually reviewed and verified. The 

result’s breakdown of the top 300 manual reviews using weighted count probability is shown in 

Figure 5-10. From Figure 5-10, the Equation of weighted count probability is good at finding 

distracted cases in the top 300 results of the DD classifier. The accuracy of classifying DD cases 

from NDD cases is 53.33%. It also shows a consistent rate of DD cases in the top results. 

 

Figure 5-10 DD Classifier Using the U+B Approach (Eq. 3, 0.65 Cutoff Threshold) 

From the Accuracy values obtained on the 500 manually reviewed dataset of the ID classifier, 

among Unigram, U+B, and U+B+T, U (by simple count probability) and U+B (by weighted 

count probability) approach perform the best, and U+B+T perform the worst. The reason is the 

same as was for the DOI and DD classifiers, trigrams are rare. With the Equation of simple count 

probability, we achieved the best result using the U approach having a 0.45 cutoff value. With 

the Equation of weighted count probability, we achieved the best result using the U+B approach 

having a 0.75 cutoff value.  
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Next, these U and U+B approaches using both Equations are applied to the 2020 and 2021 NID 

dataset and the top 100 results of 2020 and top 300 result of 2021 were manually reviewed and 

verified. The result’s breakdown of the top 300 manual reviews using weighted count probability 

is shown in Figure 5-11. From this figure, we can see that the Equation of weighted count 

probability is good at finding inattentive cases in the top 300 results of the ID classifier. The 

accuracy of classifying ID cases from NID cases in 2021 dataset is 63.33%. However, there is no 

consistent rate of ID cases in the top results.  

 

Figure 5-11 ID Classifier Using the U+B Approach (Eq. 3, 0.75 Cutoff Threshold) 

The summary of all three classifier’s best results using both the Equation of simple count 

probability and the Equation of weighted count probability is shown in Table 5-8 Summary of 

All Results of Best ApproachesTable 5-8. As discussed earlier, the U+B approach yields better 

results most of the time. Only in one case, U approach shows more promising results. We can 

also see that the DOI classifier yields very high accuracy values, followed by the ID classifier 

and finally, by the DD classifier. In general, the DOI classifier performs the best to separate DOI 

cases from NDOI cases, where the DD classifier performs the worst to separate DD cases from 

NDD cases. 

On the other hand, the ID classifier shows satisfactory performance. In the top results, the ID 

classifier offers the best performance, followed by the DOI classifier and finally, by the DD 

classifier. In general, the DD classifier performs the worst in every sector, which also degrades 

the overall performance on the DD versus ID classification. As a cascaded approach is used to 

classify cases, every classifier needs to perform well to achieve an overall good result.  
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Table 5-8 Summary of All Results of Best Approaches 

Classifier Best 

Approach 

Equation Threshold Accuracy* Top 100 

results of 

entire-2020 

dataset 

% of top 

300 results 

of entire-

2021 dataset 

DOI 

U+B 
Simple count 

probability 

 

0.35 

 

 

78 

 

 

89 

 

91.00 

U+B 

weighted 

count 

probability 

0.5 

 

78 

 

 

91 

 

78.00 

DD 

U+B 
Simple count 

probability 
0.75 65 84 51.00 

U+B 

weighted 

count 

probability 

0.65 54 57 53.33 

ID 

Unigram 
Simple count 

probability 
0.45 

 

45 

 

 

70 

 

82.33 

U+B 

weighted 

count 

probability 

0.75 
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98 

 

63.33 

*: Top 100 results of random sample (300 for DOI, 500 for DD and ID) from 2018-2019 dataset to find the best 

threshold. 

5.2.5 Models to Classify DD, ID and Neither 

In the previous sections, we have performed distracted and inattentive versus neither 

classification using the DOI classifier, distracted versus non-distracted classification using the 

DD classifier, and inattentive versus non-inattentive classification using the ID classifier. The 

purpose of this section is to perform all the classifications using the three cascaded classifiers in 

a single model that are shown in Figure 4-1 to Figure 4-3. The test set of this evaluation includes 

270 manually reviewed random cases from 2018-2020 dataset where 93 are distracted (DD), 87 

are inattentive (ID), and 90 are Neither (NDOI) Narratives. These models can distinguish 

inattentive, distracted and neither narrative, which can help the transportation authorities to 

improve the road safety protocols and the car manufacturers to develop and modify car safety 

features. We used accuracy which is a ratio of correctly predicted data (narratives) to the total 

data as the performance metric to evaluate all the models.  Figure 5-12 and Figure 5-13 present 

the accuracies of the DOI, DD and ID classifiers in the models. The overall accuracy of the 

models can be calculated by taking the weighted average of accuracies of the DOI, DD and ID 

classifiers. 

The best approaches of all three classifiers using both Equations are selected in each of our 

frameworks/models. With the Equation of simple count probability and all the best approaches 
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for respective classifiers, we achieved the highest accuracy of 70.37% (weighted average of the 

DOI, DD and ID classifiers) from the Hierarchical Model (Figure 5-12). With the best threshold 

value of 0.75, the cascade-classifier misclassified 27 narratives as neither (NDOI) cases, which 

are either distracted or inattentive. It misclassified 10 cases as DOI, which are Neither (NDOI) 

cases. Among the input of 87 ID cases, 41 (47.12 %) are correctly classified, where this cascaded 

classifier correctly classifies 69 out of 93 input of DD cases (74.19 %). The Priority Model - DD 

was the second-best model that achieved an accuracy of 66.29%. The Priority Model – ID 

achieved an accuracy of 58.89%.  However, the Priority Model – DD and the Priority Model – 

ID have a threshold value of 0 for the ID and DD classifiers, respectively.  As a result, anything 

that is classified as NDD in the DD classifier of the Priority Model – DD is considered as ID and 

anything that is classified as NID in the ID classifier of the Priority Model – ID is considered as 

DD, which means that the last classifiers become unnecessary in the models. In addition, the 

error cumulates from the DOI to DD to ID classifiers in the Priority Model – DD, and same thing 

applies for the Priority Model – ID. 

 

 

Figure 5-12 Hierarchy Model for Simple Count Probability Method 

 

With the Equation of weighted count probability and all the best approaches for respective 

classifiers, with the same test-set including 93 distracted (DD), 87 inattentive (ID) narratives and 

90 Neither (NDOI), the highest accuracy of 64.81% is also achieved by the Hierarchical Model 

(Figure 5-13). 83 out of 93 (89.25 %) DD cases are correctly classified with the Hierarchical 

model, but only 24 out of 87 (27.58 %) ID cases are correctly classified. The cascade-classifier 

misclassified 15 narratives as neither (NDOI) cases that are either distracted or inattentive and 
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also misclassified 22 cases as DOI that are actually Neither (NDOI) cases. With the Equation of 

weighted count probability, for the Priority Model-ID (second best model among the weighted 

count probability), the cascade-classifier predicts 59 narratives as neither (NDOI) cases, which 

are either distracted or inattentive. With this model, 52 out of 93 DD cases (55.91 %) are 

correctly classified, where among 87 ID cases, 24 (40.23 %) are correctly classified. The same 

analysis applies for the Priority Model – DD and the Priority Model – ID for weighted count 

probability as described for the priority models with simple count probability. For brevity, we 

did not present graphical analysis for all the models. 

 

Figure 5-13 Hierarchy Model for Weighted Count Probability Method 

By comparing the result of three classifiers in the models, the ID classifier performs poorly but it 

can likely be improved with a larger training set (as the training dataset contains very few 

positive narratives). Also, some police reports did not differentiate distracted and inattentive 

cases. From this discussion, the Hierarchical model using the simple count probability approach 

is considered the best model for differentiating distracted and inattentive narratives. 

Though we achieved an accuracy of 70.37% for distinguishing distracted and inattentive cases, 

this research is the first step to automatically separating distracted cases from inattentive cases. 

The combined DOI and DD classifier in the model performs great on separating distracted and 

inattentive cases from all other. Also, the modified weighted count probability works very well 

on finding the most relevant words for each classifier. With an improved dataset for the ID 

classifier, the results are likely to improve for the cascaded classifiers. 
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6. CONCLUSION AND RECOMMENDATIONS 

This study used probabilistic, NLP and ML techniques to facilitate the identification of certain 

types of missed crashes from crash narratives. In order to find the best classifiers, multinomial 

naive bayes (MNB), logistic regression (LGR), support vector machine (SVM), k-nearest 

neighbor (K-NN), random forest (RF), gated recurrent unit (GRU), and Noisy-OR were tested 

and compared. As an experimental study, we used the crash narrative of the Wisconsin crash 

report from 2017 to 2021 to identify missed crashes related to work zone, distracted or 

inattentive driving, distracted driving only, and inattentive driving only (WZ, DOI, DD and ID 

crashes). 

The data from 2017 to 2018 was used for WZ training, while 2019 data was used for WZ testing. 

The performance of MNB, K-NN and RF were not satisfactory because the training dataset is too 

noisy (with about 70% false positives) and has many irrelevant words (words that do not relate to 

WZ). Although LGR and SVM can detect many WZ-related keywords, their performance in 

detecting missed WZ crashes was not satisfactory. As the top two performers, GRU and Noisy-

OR are comparable in their ability to find missing WZ crashes. The best Noisy-OR result was 

achieved using both unigram and bigrams from the narratives. 

Further analysis on WZ suggests that two types of issues contribute to the misclassification of 

GRU and Noisy-OR: the mixed phrase that contains at least one highly relevant WZ word (e.g 

"construction building", “johnson construction ”) and the pesudo-WZ phrase that contains WZ-

related words such as “construction barrels”, “construction equipment” and “construction 

barrier” in a completely irrelevant context. In other words, the narrative with pesudo-WZ phrases 

contains inadequate information and therefore cannot be classified as a work zone crash.  

In addition, Noisy-OR and GRU work differently in noisy narratives and their performance 

varies by the narrative length. Noisy-OR is more suitable for noisy or lengthy narratives, while 

GRU is more suitable for less noisy or shorter narratives. In Noisy-OR, an important keyword or 

positive word can gain a lower probability score (i.e. construction), which leads to a lower 

classification score for shorter narratives. On the other hand, GRU cannot handle longer 

narratives that contain many NWZ related words. 

Finally, a manual review was conducted for the top 450 cases of Noisy-OR results, and the 

Noisy-OR recovered 201 missing WZ crashes. The review also indicated that the chance of 

additional missed WZ crashes beyond the 450 was very low. A follow-up analysis revealed that 

73.13% of the missed crashes occurred from 8 a.m. to 6 p.m., with a high percentage happening 

from 4 p.m. to 5 p.m. A large percentage of those crashes occurred in the summer (July and 

August) and 43% occurred on urban city streets. The narratives of the cases that have high 

Noisy-OR scores but are not WZ crashes were carefully reviewed and categorized into the five 

following groups: 
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1) Cases with positive words for location or address such as “the Zoo”, “Zoo interchange”: 

This issue is caused primarily by major roadway construction projects that span multiple 

years, multiple stages and phases and multiple areas.  

2) Cases with positive words for (temporal) traffic control devices such as “concreate 

barrier”, “median cement”, “attenuator” and “barriers”: Many of these devices, such as 

median concrete barriers, are permanently deployed to channelize traffic or to protect 

overpass and underpass structures such as an attenuator near a bridge or at a gore area. 

3) Cases with weak positive words for traffic situations such as “congestion” or “backup” 

which are caused by non-WZ events (i.e., regular congestion or secondary crashes). 

4) Cases with strong positive words such as “orange construction cones” or even 

“construction zone” whose situations are not actually related to a work zone location or 

work zone activities. 

5) Undecided cases, even after a manual review: The authors were conservative and 

categorized undecided crashes from this study as NWZ crashes. 

The location and/or time of a work zone crash can certainly improve WZ classification in types 1 

and 5. Such information, however, needs to be linked to and retrieved from a different data 

source or system such as a lane closure system or a work zone management system. Application 

of advanced text mining techniques may help improve classification accuracy for cases in types 2 

and 3. Unfortunately, no good solutions are available for cases in type 4, but such cases rarely 

occur. Nevertheless, the discussion underscores the importance of properly documenting the 

presence of a work zone or work zone activities in the crash narrative.  

In the second case study, we applied various forms of words with Noisy-OR to identify DOI, 

DD, and ID crashes from crash narratives. The 2018 and 2020 datasets were used in training, and 

the 2021 data was used as a test dataset because of the updates to the distraction data field in 

2018. The methods were based on probability scores of unigrams, bigrams, and trigrams and 

were combined using Noisy-OR. A new and improved way of computing probability scores was 

introduced to suit the task. The method worked on automatically generated training data that 

required no manual effort. The classifiers obtained good results despite the noise in the training 

data. Finally, several methods that combined these classifiers into cascade classifiers to 

categorize DD versus ID narratives were investigated.  

Overall, the DOI classifier with simple count probability method worked well in a new (2021) 

dataset compared to the DOI classifier with weighted count probability. The threshold value is 

0.35 for simple count probability and 0.5 for weighted count probability, respectively. Since a 

lower threshold value means keeping more keywords for the classifier, the DOI classifier with 

simple count probability searches more keywords in the narratives compared to that in the 

classifier of weighted count probability. A DOI narrative that does not have strong DOI related 

words (high probability scores) can be handled well by the simple count probability method. 

The performance of the DD classifier with weighted count probability is consistent in both the 

known (2018-2020) and new (2021) dataset compared to that of the DD classifier with simple 

count probability. The threshold value of the DD classifier with weighted count probability is 
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lower than that of the DD classifier with simple count probability. Therefore, a similar 

conclusion can be drawn for the DD classifier as the DOI classifier with simple count probability 

– the higher threshold value of 0.65 (compared to that of the DOI classifier) indicates that the 

DD classifier with weighted count probability will work well in the narrative that has strong DD-

related keywords.  

The performance of the ID classifier with simple or weighted count probability is not consistent. 

In the random sample dataset, the accuracy is very low, indicating that the ID classifier does not 

perform well in the narratives that do not contain strong ID-related keywords. The ID classifier 

with simple count probability performs well in finding ID cases in the top results of known (e.g., 

training) and new (e.g., test) dataset. Though the classifier with weighted count probability 

performed well in the known dataset, it did not perform well in the new dataset; it is possible that 

the ID dataset is very noisy. During the manual review process, we found that most of the time 

ID narratives did not contain any inattentive keywords. Moreover, most of the keywords in the 

inattentive cases were related to distracted driving (Table 5-7), indicating that attentive driving 

cases were not properly recorded in the structured data. 

The performance difference for the DD and ID classifiers in the known and new dataset shows 

that the new test dataset either has many keywords that are not present in the training dataset or 

that the keywords are not strongly related to DD and ID cases. The main purpose of this study 

was to find misclassified DOI, DD and ID crashes from the narratives that are reported as NDOI, 

NDD and NID, respectively. There is no harm in including a test dataset into the training dataset 

to generate positive word lists for Noisy-OR.  

Compared to the work zone classifier that does not require any threshold value, the DD and ID 

classifiers perform poorly even in the presence of an optimal threshold. The plausible reason is 

that the data collector who records the data may not be very familiar with the new data fields in 

the structured data or may have difficulty distinguishing DD and ID crashes despite the well-

defined DD and ID crashes in the manual. 

In order to separate DD and ID from the DOI cases, several cascade classifiers (models) have 

been developed using the DOI, DD and ID classifiers. All cascade classifiers perform well at 

identifying DOI cases from the narrative. The hierarchical model with both simple count and 

weighted count probability performed best among all the models. The reason behind this is that 

after classifying the DOI cases in the first stage of the model, the resulting DOI cases are sent 

into the DD and ID classifiers. The DD and ID classifiers work parallelly and independently to 

classify DD and ID cases from the DOI cases, respectively. After the classification task is 

completed in the DOI classifier, all classified DOI cases are used as inputs for the DD and ID 

classifiers. In the hierarchical models, the DD and ID classifiers do not classify a narrative as a 

Neither case; therefore, all the false DOI cases will be classified as either ID or DD. In other 

words, the performance of the hierarchical model degrades as false DOI cases increase. The 

number of false DOI cases in the hierarchical model with simple count probability is less than in 

the hierarchical model with weighted count probability; this is why the hierarchical model with 

simple count probability worked best in separating DD and ID from DOI cases. The performance 

of the Priority Model – DD and the Priority Model – ID with simple count probability and 
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weighted count probability is inconsistent. Therefore, we do not recommend using the priority-

based models with the presence of at least one poor classifier.   

Based on the lessons learned from this study, the following recommendations have been 

suggested: 

1. Shallow machine learning methods such as multinomial naive bayes (MNB), logistic 

regression (LGR), support vector machine (SVM), k-nearest neighbor (K-NN), and 

random forest (RF) may not work well for classifying text when the data is noisy and 

imbalanced.  

2. For noisy text data, both Noisy-OR and gated recurrent unit (GRU) can be used, but GRU 

should be used cautiously. 

3. Noisy-OR is the best option when most of the narratives in the dataset are lengthy (e.g, 

more than 200 words). GRU, however, provides a better result in the opposite 

circumstance. So, the Noisy-OR is more appropriate for processing imbalanced and noisy 

crash narratives. 

4. GRU is complex, computationally intensive and difficult to interpret. On the contrary, 

Noisy-OR is very simple, theoritically sound and requires less comoputational power. 

Therefore, we recommend using both to find the maximum number of missed crashes.  

5. Moreover, the accuracy of Noisy-OR is consistant. Such consistency helps to formulate a 

regression model which can be used to determine the optimam or near optimum number 

of narratives to review, if required. 

6. When a narrative carries information related to two or more crash types (e.g., distracted 

and inattentive), their individual Noisy-OR classifiers can be used together in a cascading 

fashion for enhanced results. 

Text mining techniques can overcome the limitations of keyword search (i.e., you need to know 

exactly what you are looking for. Even so, keyword searches often return irrelevant results (false 

positives) because words often have multiple meanings) and maximize the value of crash 

narratives by extracting useful and meaningful information. It is anticipated that text mining 

techniques will play a more and more important role in supplementing structured data fields in 

crash data analysis.  
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