Exposure Data to Improve Pedestrian Safety: WisDOT SE Region Pilot Study

Robert Schneider, PhD, UW-Milwaukee, Department of Urban Planning Xiao Qin, PhD, UW-Milwaukee Department of Civil & Environmental Engineering Andrew Schmitz, Masters Student, UW-Milwaukee, Department of Urban Planning October 2021

Source: USDOT Pedestrian Safety Action Plan, https://highways.dot.gov/sites/fhwa.dot.gov/files/2020-11/FHWA_PedSafety_ActionPlan_Nov2020.pdf, 2020.

ADDRESSING THE CHALLENGE

Some factors that are unique to pedestrian safety present challenges when it comes to solutions. Unlike vehicles, there is currently not a consistent way to measure exposure to risk as it relates to pedestrians. Exposure describes the frequency in which pedestrians are exposed to the risk of a crash with a vehicle. The number of person trips is generally not collected. There are some States and localities that are beginning to collect this information, but it is not widespread. In addition to not having a way to measure risk, there are other problems associated with pedestrian safety including urban sprawl which can make it difficult for pedestrians to get around; poor links to transit; problems caused by weather conditions; and a general lack of safe, complete networks for pedestrians to use when they go about their daily travels.

FHWA, NHTSA, and other USDOT agencies are addressing these and other challenges while moving forward with efforts to improve pedestrian safety. The USDOT Pedestrian Safety Action Plan includes actions that will be completed in the near term (December 2020) and those that will be completed by December 2021 and beyond. The plan also identifies those actions that fall under the safe system approach. The safe system approach promotes a more forgiving transportation system that takes human vulnerability into account. It caters to all the modes of transportation, including pedestrians and bicyclists.

Source: USDOT Pedestrian Safety Action Plan, https://highways.dot.gov/sites/fhwa.dot.gov/files/2020-11/FHWA_PedSafety_ActionPlan_Nov2020.pdf, 2020.

- Count core users of our transport system
- Prioritize projects
- Inform facility design

- Count core users of our transport system
- Prioritize projects
- Inform facility design

N. 27th Street Rapid Implementation Project (City of Milwaukee DPW)

Source: Wisconsin Department of Transportation. TC Map (Traffic Count Map), https://wisconsindot.gov/Pages/projects/data-plan/traf-counts/default.aspx, 2021.

Safety Example: <u>Number</u> of Crashes

Source: City of Milwaukee, Milwaukee Pedestrian Plan, 2019

Safety Example: Crash <u>Risk</u>

Source: City of Milwaukee, Milwaukee Pedestrian Plan, 2019

Safety Example: Crash <u>Risk</u>

Source: City of Milwaukee, Milwaukee Pedestrian Plan, 2019

1: Regional Pedestrian Volume Model

Schneider, R.J., A. Schmitz, and X. Qin. "Development and Validation of a Seven-County Regional Pedestrian Volume Model," Transportation Research Record: Journal of the Transportation Research Board, https://doi.org/10.1177/0361198121992360, 2021.

Data: Manual Intersection Counts

- Turning counts along SHS & other intersections
- SE Region Office: 1,252 counts from 2013-2018

Intersection Traffic Volume Report	Count Basics Version 2013.14.1 Page 1 of 11 Start Date: Monday, June 15, 2014 Weekday Schools Not in Sessic
	Total Number of Hours Counted: 13 Non-Holiday No Special Events
Base Information, Observed (13) Hour and	Estimated (24) Hour Volume Summaries
	E IS
Intersection of: 39th Avenue and STH 158	Print Print
Site Information	Count Information
Municipality Kenosha	Hrs Counted: 6:00 AM-7:00 PM
County Kenosha WisDOT Region SE	1st Day of Count Monday, June 16, 2014 Weather
Traffic Control Traffic Signal	AM Peak Period Tuesday, June 17, 2014 Cloudy& Dry
Roadway Names North Direction 🔨	Midday Peak Period Tuesday, June 17, 2014 Cloudy & Dry
North Leg 39th Avenue	PM Peak Period Monday, June 16, 2014 Clear & Dry
East Leg STH 158	Calculated Peak Hours
South Leg 39th Avenue	AM 9:00-10:00am MD 1:00-2:00pm PM 4:15-5:15pm
West Leg STH 158	Peak Hours Selected for Analysis
Special Considerations	AM 9:00-10:00am MD 1:00-2:00pm PM 4:15-5:15pm
Schools Not in Session	Daily/Seasonal Adjustment Group (2) Urban Arterials & Collectors
Holidays None	Count Expansion Group (2) Urban Arterials & Collectors
Special Events None	Daily/Seasonal Adjustment Factor 0.898 Count Expansion Factor 1.261
Special Pedestrians Observed	Company Name TADi Manual Adj. 1.000
Pre-school children A Few	Observers AM Peak Period Jack & Karlyn Bieberitz
Elementry school age children None	Midday Peak Period Mike Weichmann
Visually impaired (white cane/helper dog) 1 or 2	PM Peak Period Ron & Pat Andryk
Elderly/disabled (except wheelchairs) 1 or 2	Ci Observed 12 Hours Volume Comments
Wheelchairs/electric scooters 1 or 2	Observed 15 Hour volume Summary
Other (describe) None None	

 Supplemented with 38 City of Milwaukee arterial counts

Source: WisDOT, SE Region

Potential Explanatory Variables

- Summarized 14 previous direct demand pedestrian volume models
- Tested variables from previous studies
 - Built Environment (Population & employment density, proximity to bus stops, retail, restaurants & bars, parks, schools, college campuses)
 - Socioeconomic (Age under 18 & over 64, median income, poverty, renters, zero-vehicle households, blue-collar & white-collar jobs)
 - Roadway (Maximum AADT & number of lanes on any approach, signal control)

Explanatory Variable Measurement

Image Source: Google Earth

Recommended Pedestrian Volume Model

 $Y_{i} = \exp(7.63 + 0.019X_{1i} + 0.0058X_{2i} + 0.43X_{3i} + 0.38X_{4i} + 0.21X_{5i} + 0.48X_{6i} + 4.18X_{7i})$

where:

 Y_i = estimated <u>annual pedestrian crossing volume</u> at intersection i X_{1i} = square root of the <u>population density</u> within 400m of intersection i X_{2i} = square root of the <u>job density</u> within 400m of intersection i X_{3i} = square root of number of <u>bus stops</u> within 100m of intersection i X_{4i} = square root of number of <u>retail businesses</u> within 100m of intersection i X_{5i} = square root of number of <u>restaurant and bar businesses</u> within 100m of intersection i

 $X_{6i} = 1$ if intersection i is within 400m of a <u>school</u> (0 otherwise)

 X_{7i} = Proportion of <u>households without a motor vehicle</u> within 400m of intersection i

Predicted Annual Pedestrian Crossing Volumes at SE Wisconsin Intersections

(Model B, "square root model")

Application: Pedestrian Risk

2 crashes in 5 years = 0.4 crash/yr

18,300 crossings/yr

9 crashes in 5 years = 1.8 crash/yr

786,000 crossings/yr

Identical scale (Source: Google Earth, 2018: image height = 1000 feet)

WI 190 & N 124th St, Brookfield **21.9 crashes/million crossings** WI 145 & N 27th St, Milwaukee **2.3 crashes/million crossings** Estimated Pedestrian Crash Risk at SE Wisconsin Intersections

(Model B, "square root model")

Putting Research Products to Use

- Interactive statewide pedestrian volume map ightarrow
- HSIP and other safety analysis processes ullet

Development of a Seven-County Regional Pedestrian Volume Model

Robert J. Schneider, PhD: Andrew Schmitz; Xiao Qin, PhD: University of Wisconsin-Milwaukee (TRB Paper 21-01658)

ABSTRACT

This study describes the development and validation of pedestrian intersection crossing volume models for the seven-county Milwaukee metropolitan region. The set of three models, among the first developed at a multi-county scale, can be used to estimate the total number of pedestrian crossings per year at four-leg intersections along state highways and other major thoroughfares. Outputs are appropriate for annual volumes ranging from 1,000 to 650,000. The three models include seven variables that have significant positive associations with annual pedestrian volume: population density within 400m of the intersection, employment density within 400m, number of bus stops within 100m, number of retail businesses within 100m, number of restaurant and bar businesses within 100m, presence of a school within 400m, and proportion of households without a motor vehicle within 400m. Results suggest that square root or cube root transformations of continuous explanatory variables could potentially improve model fit. The models have fair accuracy, with each of the three model formulations predicting 60% or more of validation intersection counts to within half or double the observed value

COUNT DATA FROM SEVEN COUNTIES, 2013-2018

Pedestrian Counts

- · Intersections along major roadways; each crossing of each leg counted separately
- 260 intersections for model development; 45 intersections for validation
- Nearly all counts were 4 or more hours and expanded to annual volume estimates

Expansion Factors

From Milwaukee Pedestrian Plan (2019) Example of hour-io-weekday lactors. Weekday-to-week

	680	School	Traf	Commercial	Other
Hour	Location in the carried business district	Ner-CBD lession with a school on an aclassed block	Nor-CBD and Nor-School Incodes with a trul access point within 1 bird.	Non-Sented, and Non-Trail Isourics with 2 or noise result or office builtnesses charlingseent Slocks	Location In come of Die other cotogories Briess Ingeliene Tand in be
12:00 AM	0.0101	0.0034	0.0005	0.0291	0.0090
100.64	0.0000	0.00728	0.000	0.0060	0.0057
2.00 AM	0.0062	0.0014	0.0001	0.0047	0.2057
3:00 AM	0.0055	0.0016	0.0005	0.0037	0.0087
4.00 AM	0.0045	0.0090	0.0005	0.0056	0.0041
1:00 AM	0.0095	0.0128	0.0299	0.0096	0.0126
MA BUS	0.0192	01034	0.0607	0.0222	0.0270
7.00 AM	0.0435	0 1175	0.0844	0.0522	0.0015
8.00 AM	0.0540	0.0403	0.0977	0.0256	0.2654
MAULE	0.01999	01120-	0.0984	0.0573	0.0560
MA 00.0	0.0097	0.0158	0.0701	0.0250	0.0050
ILCO AM	0.0760	0.0533	0.0444	0.0684	0.0577
12-011W	0.01005	0.0500	0.0011	0.0630	0.0592
1.08 PM	0.0758	0.6741	0.0935	0.2645	0.0018
2:00 FM	0.0702	0.0970	0.0342	0.0712	0.0676
3.08 PM	0.0702	0.1098	0.0637	0.0820	0.0897
4:00 FM	0.0610	0.0005	0.0575	0.0730	0.0754
\$:08 FM	0.0095	0.0297	0.0341	0.9715	0.0761
A-OR PM	0.0524	0.0507	01544	0.0540	0.0665
7.00 PM	0.0192	0.0 165	0.0 885	0.0564	0.0010
ROLL	0.0167	0.0754	URINA	III DATE	0.0351
9.00 FM	0.0914	0.0180	0.0080	0.0341	0.0260
ID:CO PM	0.0235	0.0115	0.0060	0.0244	0.0173
TOUR PM	0.0190	0.0270	0.0033	0.0750	0.0142
	Reserved on 25 counter	Based on 15 counter	Reveal uni 7 countor	Bevet un 55 counter	Based on 30 counter

MODEL DEVELOPMENT & VALIDATION

We used negative binomial regression to develop models of annual pedestrian volumes at 260 intersections. We applied the best-fit models to predict volumes at the 45 validation intersections.

Potential Explanatory Variables Tested

- · Surrounding built environment/land use: Population density (per sq. mi.) within 400m/800m, Job density (per sq. mi.) within 400m/800m, Bus stops within 100m/400m. Located within 400m of a park-and-ride lot. Retail properties within 100m/400m. Restaurants and bars within 100m/400m, Located within 100m/400m of a park, Located within 100m/400m of a school, Located within 100m/400m of a college campus
- Neighborhood socioeconomic characteristics: % younger than18 within 400m, % older than 64 within 400m,
- median income within 400m, % below poverty level within 400m, % with no vehicle within 400m, % rental housing units within 400m, % workers in construction & manufacturing within 400m, % workers in white collar jobs within 400m
- · Roadway characteristics: Signalized intersection, 4-lane roadway, Maximum AADT on any approach

Model Development The following variables had statisticallysignificant associations with annual pedestrian

volumes. We also tested square root and cube root transformations of the variables in separate models.

- Population density within 400m.
- · Employment density within 400m. · Number of bus stops within 100m.
- Number of retail businesses within 100m.
- Number of restaurant and bar businesses within 100m.
- Presence of a school within 400m. Proportion of households without a
- motor vehicle within 400m.

Model Validation

All three models predicted the observed pedestrian volumes with fair accuracy, though the Square Root

	A. Base Model		B. Square Root Model		C. Cube Noot Mode	
Variable	Beto	p-value	Beta	p-value	Beta	p-valu
Constant	8.334	0.000	7.629	0.000	7.071	0.00
Population density within 400m	0.000140	0.001				
Square root of pop. density			0.019	0.000		
Cube root of pop. density					0.100	0.00
Employment density within 400m	0.000021	0.046				
Square root of emp. density			0.00581	0.005		
Cube root of emp. density					0.036	0.00
Number of bus stops within 100m	0.336	0.000	1			
Square root of bus stops	- 21		0.434	0.000	2	
Cube root of bus stops					0.477	0.00
Retail businesses within 100m	0.108	0.026	e è		0	
Square root of retail businesses			0.375	0.000		
Cube root of retail businesses				0.000000	0.471	0.00
Restaurants/bars within 100m	0.116	0.062	3 5		8	
Square root of restaurants/bars			0.208	0.050		
Cube root of restaurants/bars					0.244	0.04
School present within 400m	0.515	0.001	0.478	0.003	0.499	0.00
% 0 vehicle HH is within 400m	5.307	0.000	4.184	0.001	4.330	0.00
Sample size (n)	260		260		260	
Log-likelihood'	-2792		-2774		-2772	
AIG	5501		5555		5550	
BIC:	5629		5593		5588	

	A. Rase Model B. Square Root Model		C. Cube Root Model				
MAS ¹	43	43724		31052		959	
R245FF	345	987	637	500	17	975	
	A. Base Model		B. Square Root Model		C. Cube Root Model		
Ratio of Estimated to Observed Count	Number of Intersections	% of Intersections	Number of Intersections	% of Intersections	Number of Intersections	No.	
> 3.00		20.0%	15	22.2%	10	33.25	
2.03 to 3.00	6	13.3%	4	8.9%	6	13.35	
1.50 to 1.99	2	5.7%	1	15.6%	1	25.69	
1.00 to 1.49	12	25.7%	3	17.8%	5	11.15	
0.67 to 0.99	6	13.3%	9	17.8%	3	17.0%	
0.50 to 0.65	5	18.3%	1	13.8%	7	15.05	
0.33 to 0.49	2	4.4%	đ	0.0%	0	0.05	
40.65	1	2.2%	2	4.415	2	4,45	
	A. Base Model		B. Square Rool Model		C. Cube Ruot Model		
Ratio of Estimated to Observed Count	Number of Intersections	56 of Intersections	Number of Intersections	% of Intersections	Number of Intersections	N 0 Intersection	
0.67 to 1.49	12	4:1.0%	15	35.0%	13	25.99	
0.50 to 1.99	27	60.0%	20	64.4%	27	60.05	
Total Intersections	2	5	X	6	45		

CONSIDERATIONS & FUTURE RESEARCH

· California model is one of the only other pedestrian models with a broader range Covered a wide range of environments, but model is still only appropriate for annual volumes ranging between 1,000 and 650,000 (not rural or dense urban core)

Overestimated volumes at intersections with 4+ lanes and in neighborhoods with lower-incomes, more poverty, and more rental housing

 Try different variables representing number of lanes and socioeconomic status Useful for showing broad differences between neighborhoods across many parts of the region, but some specific intersection estimates are imprecise. Euture research

Increase sample size

IMPLICATIONS

- · Test more explanatory variables (e.g., performance venues/special attractors,
- traffic speeds, trash, street trees, crime rates, square footage of businesses) Add 3-leg intersections to model
- Develop separate models for each crosswalk
- Collect more continuous counts to improve expansion factors
- Challenge: tradeoff between practicality and accuracy. So also try other methods.

This study was supported by a grant from the Wisconsin Department of Transportation (WisDOT) Bureau of Transportation Safety. Thanks to the WisDOT Southeast Region office. Southeastern Wisconsin Regional Planning Commission, the City of Milwaukee, and other local agencies for sharing data.

Model and	Model and Validation Intersections							
Annual Protochan strategy	Sarder di feceri costan [rosei]	I ci Coare Institues Institues	Harcar of Great Institute (mitdated)					

2000 4.950

10,000 24,00

Caltrans Pedestrian Volume Map

Source: California Department of Transportation. State Highway Pedestrian Exposure Estimates, <u>https://dot.ca.gov/programs/safety-programs/ped-bike/exposure</u>, 2021.