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Executive Summary 
 
This white paper outlines how an integrated computer vision and Industrial Internet of Things 
(IIoT) solution can significantly improve manufacturing quality control and efficiency. It 
addresses a common challenge in modern manufacturing: subtle production anomalies that 
escape traditional automated detection and lead to waste, downtime, or product recalls. The 
paper presents a case study from the Connected Systems Institute’s (CSI) advanced 
manufacturing testbed at the University of Wisconsin–Milwaukee, where a custom machine 
vision system was deployed to monitor product quality in real-time. Leveraging an edge AI 
device (NVIDIA Jetson) and cloud analytics (Microsoft Azure), the solution was able to detect 
defects on a high-speed production line and provide immediate feedback to operators. As a 
result, previously unnoticed defects were identified and removed early, reducing scrap and 
improving overall throughput. The following sections discuss the industry context and problem, 
detail the technology solution and its implementation, report on results and key metrics, and 
examine the business impact. Finally, the paper provides considerations for replicating this 
approach in other manufacturing settings, highlighting potential challenges and requirements 
for success. 

  
Figure 1 University of Wisconsin-Milwaukee CSI
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Industry Context  
Modern manufacturing is undergoing a 

digital transformation often referred to as 

Industry 4.0. This movement integrates 

physical production equipment with digital 

technologies such as sensors, connectivity, 

and intelligent automation. A cornerstone of 

Industry 4.0 is the Industrial Internet of 

Things (IIoT), which enables plant-floor 

devices and machines to communicate data 

from the production line to enterprise 

systems and cloud platforms in real time. 

This connectivity allows for advanced 

monitoring, data analysis, and adaptive 

control of manufacturing processes. For 

example, IIoT systems can track production 

parameters, equipment status, and product 

quality continuously, leading to insights that 

drive efficiency improvements. 

However, rapid technological advancement 

has also created integration challenges, 

especially for small and medium-sized 

manufacturers. Many of these firms struggle 

to seamlessly implement new Industry 4.0 

technologies into legacy systems, resulting 

in communication bottlenecks, 

inefficiencies, or security vulnerabilities. 

Moreover, the human factor is significant: 

there is a well-recognized skills gap shortage 

of workers with the specialized expertise to 

deploy, manage, and maintain advanced 

automation and data analytics systems. This 

gap can slow down the adoption of cutting-

edge solutions on the factory floor. 

Companies find that while technologies like 

IIoT and AI promise great benefits, 

achieving those benefits in practice requires 

not only capital investment but also 

workforce development and process 

changes. 

 

In response to these trends, industry and 

academia have increasingly collaborated to 

demonstrate practical solutions and train the 

next-generation workforce. One example is 

the Connected Systems Institute (CSI) at 

UWM, which hosts an Advanced 

Manufacturing Testbed co-developed with 

industry leaders (including Rockwell 

Automation, FANUC, Endress+Hauser, 

Microsoft, and others). This state-of-the-art 

facility simulates a modern factory 

environment and serves as proving ground 

for Industry 4.0 technologies. Research and 

pilot projects at CSI focus on areas like 

IIoT-driven automation, robotics, and data 

analytics. A key topic of interest and the 

focus of this white paper is the integration of 

computer vision with IIoT to enable 

automated, real-time quality assurance. By 

experimenting in such an environment, 

stakeholders can explore how intelligent 

vision systems might transform 

manufacturing processes, reduce waste, and 

increase productivity in real-world settings. 

Problem Statement 
Even in highly automated production lines, 

quality control gaps can occur. Advanced 

robots and machinery perform repetitive 

tasks with precision, but they may not 

always detect when something goes wrong 

in the process. A prime example is the 

occasional mishandling of products on the 

line events that might be rare and fleeting 

yet have significant consequences. In our 

study environment (the CSI testbed), an 

intermittent anomaly was observed: robotic 

arms would sometimes misgrip or jostle 

small containers (vials) on the line, causing 

a few to be dropped, crushed, or otherwise 

damaged. The automated system’s internal 

sensors did not flag these incidents; 

production would continue as if every item 

were intact. This blind spot reflects a 

broader challenge in manufacturing: subtle 

or rapid anomalies can escape standard 

detection, leading to downstream issues. 
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On a real factory floor, undetected defects or 

mishandled items can disrupt operations and 

erode profitability. For instance, a dropped 

or broken vial in a batch might spill contents 

or contaminate equipment, necessitating 

cleanup and unplanned downtime. If a 

damaged product isn’t caught and is mixed 

into finished goods, the entire lot might be 

compromised. In many industries, especially 

pharmaceuticals or food & beverage, failing 

to catch such defects early can result in 

hazardous products reaching customers, 

with potentially deadly consequences and 

massive recalls. Even when safety isn’t at 

stake, shipping substandard products harms 

customer trust and often forces expensive 

rework or replacement of goods.   

 

1) Several underlying factors contribute 
to this quality control gap: 
Intermittent Automation Failures: 
No matter how advanced, automation 

systems can experience occasional errors 

(e.g. a robot’s grip slipping). These events 

may happen in a split second. Traditional 

sensors or logic controllers might not 

recognize a brief mishap, especially if the 

process flow continues normally afterward. 

In the CSI testbed, about 4% of vials were 

mishandled over a five-month observation 

period non-trivial defect rate given high 

production volume. 

 

2) Inadequate Real-Time Detection: 
Existing quality control mechanisms often 

rely on scheduled inspections, basic sensors, 

or manual checks. They are not always 

equipped to catch fast, small-scale 

irregularities. In our consultations with 

industry experts, we found that even 

sophisticated manufacturing lines can have 

an undetected defect rate of roughly 2–3%. 

Tiny cracks, minor spills, or momentary 

misalignments might pass unnoticed if they 

occur between inspection points or outside 

sensor parameters. This highlights the need 

for more intelligent, continuous monitoring 

systems. 

 

3) Operational and Financial Impact: 
Each undetected anomaly directly translates 

into waste and inefficiency. A mishandled 

container results in lost material (the product 

inside becomes scrap) and potentially 

wasted packaging or ingredients in 

subsequent processes. Over time, these 

losses added up, and the data from our 

testbed suggested that unchecked vial 

mishandling could lead to significant annual 

waste costs. Moreover, suppose defects slip 

through to later stages. In that case, they 

might cause equipment wear or failures (if, 

say, a broken piece jams a machine) and 

degrade inventory accuracy (the system 

assumes more good products were made 

than were). In the worst case, defective 

products reaching customers trigger recalls 

and legal liabilities, impacting revenue and 

brand reputation. 

 

 
Figure 2 CSI's Advanced Manufacturing testbed 

In summary, the manufacturing sector faces 
a critical challenge: how to detect and 
address subtle production anomalies in 
real time to ensure dependable quality and 
high efficiency. The problem is not only 
identifying obvious errors but also spotting 
those “hidden” flaws that occur sporadically 
and are easily missed by conventional 
automation. As the push toward digital 
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manufacturing continues, solving this 
problem becomes essential for maintaining 
productivity and competitive advantage. 
 

Technology Solution 
To address the quality control gap, a custom 

computer vision system integrated with IIoT 

connectivity was developed and deployed in 

the testbed. The solution adds a layer of 

intelligent visual inspection to the existing 

manufacturing line, enabling automatic 

detection of anomalies as they occur. The 

design centers on two key technological 

components: edge-based machine vision and 

cloud-based analytics. 

 

Edge Vision System: At the core of the 

solution is a smart camera setup on the 

production line that monitors each product 

in real time. In practice, this consists of a 

high-quality USB industrial camera linked 

to an NVIDIA Jetson AGX Xavier edge 

computing device. The Jetson Xavier is a 

powerful, GPU-accelerated small computer 

capable of running advanced AI algorithms 

on-site (at the “edge” of the network). A 

tailored object detection model (based on the 

Single Shot Detector MobileNet (SSD 

MobileNet) architecture) is deployed on the 

device to analyze each video frame for signs 

of defects or mishandling. This model was 

chosen for its balance of speed and accuracy, 

crucial for keeping up with high-speed 

manufacturing. When a vial is being handled 

incorrectly or shows a defect (e.g., cracks, 

spillage, or an abnormal position), the vision 

system identifies it within milliseconds. The 

edge device can then flag the event 

immediately for response. By performing 

this analysis locally on the Jetson (rather 

than sending every frame to the cloud), the 

system minimizes latency and continues to 

work even if the internet connection is 

temporarily lost. This configuration helps 

prevent material wastage by catching issues 

the moment they occur on the line. 

 

 
Figure 3 High-level architecture of the computer vision 
quality control solution, combining an edge AI device 

 
 
Detection Performance: The machine vision 

model underwent training and tuning to 

achieve robust performance in the testbed 

environment. During evaluation, it 

demonstrated a high level of accuracy in 

detecting the target anomalies. Key 

performance metrics include: 

 

• Precision: ~71.9% – meaning when 

the system reported a defect, roughly 

72% of the time it was a true positive 

(actual anomaly). A solid precision 

reduces false alarms so operators are 

not overburdened by unnecessary 

stops. 

 

• Recall: ~93.3% – meaning the 

system caught approximately 93% of 

all true defects on the line. High 

recall is critical in quality control to 

ensure almost no real issue goes 

unnoticed. 

 

• F1 Score: ~88.9% – the harmonic 

mean of precision and recall, 

indicating overall effectiveness of 
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the detection algorithm at an 80% 

confidence threshold. 

 

These metrics indicate that the vision system 

performs at a level that meets or exceeds 

typical industry standards for quality 

inspection. In other words, the AI is 

correctly identifying most defects while 

keeping false alerts to a manageable level. 

Such performance was achieved through 

careful model selection (SSD MobileNet 

proved both agile and effective on the Jetson 

platform) and iterative testing. (Figure 1 

illustrates the architecture of this edge vision 

system and how it connects to cloud 

analytics.) 

 

Data Transmission and Cloud Analytics: 

When the edge vision system detects an 

anomaly, it doesn’t just alert local operators, 

but it also streams data to the cloud for 

further analysis. Specifically, the Jetson 

device sends a packet of information to a 

Microsoft Azure cloud platform endpoint. 

This packet can include the timestamp of the 

event, details about the detected anomaly, 

and even short video snippets or images of 

the defect. In Azure, this data enters an 

advanced analytics pipeline. The cloud 

infrastructure aggregates and analyzes these 

events over time, using Azure’s powerful 

data processing and machine learning 

services. By doing so, it can identify trends 

or recurring issues and generate predictive 

insights. For example, cloud analysis might 

reveal that anomalies happen more 

frequently on a particular machine or shift, 

suggesting a preventative maintenance need 

or operator training opportunity. The cloud 

platform can also continuously improve the 

edge detection algorithm by analyzing false 

positives/negatives and retraining the model 

with more diverse data. This feedback loop 

edge detection feeding cloud analysis, which 

in turn refines edge intelligence, helps boost 

the accuracy and efficiency of the overall 

system over the long run. Additionally, 

having data in the cloud allows management 

to access dashboard reports on quality 

performance from anywhere and integrates 

with broader enterprise quality management 

systems. 

 

Implementation & Integration 
Implementing this computer vision IIoT 

solution in the CSI advanced manufacturing 

testbed required careful planning and 

integration with existing processes. The 

deployment was carried out as a pilot project 

over a span of three months in a controlled 

setting to ensure minimal disruption and to 

measure outcomes. 

 

Pilot Setup: The edge vision system 

(camera and Jetson device) was physically 

installed on the production line of the 

testbed, focusing on a critical handling point 

for the vials. The Jetson was configured to 

interface with the testbed’s network so that 

detection events could be communicated 

both to on-site personnel and to the Azure 

cloud. An initial challenge encountered was 

ensuring that the Jetson’s output could 

trigger alerts within the testbed’s control 

system (which is composed of industrial 

PLCs and manufacturing execution 

software). This was solved by integrating 

Jetson’s signals with the testbed’s existing 

alarm/notification system, enabling 

automatic stoppage or operator alerts when a 

defect was detected. Concurrently, Azure 

cloud services were set up to receive 

anomaly event data from Jetson through a 

secure IoT messaging protocol. 

 

Integration Process: Once the hardware 

and connections were in place, the system 

underwent a series of trials. Approximately 

150 vials (across three different product 
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formulations run on the CSI line) were used 

in test runs that simulated regular production 

conditions. During these runs, any time the 

vision model flagged a vial as damaged or 

mishandled, the system would log the event 

and notify operators in real time. Operators 

and engineers were thus able to witness how 

the AI "watchdog" functioned alongside the 

normal automation. The integration allowed 

the generation of real-time alerts on the 

factory floor, for example, a light signal or a 

dashboard pop-up would indicate “Defect 

detected on Line 1.” Additionally, the 

system sent analytical reports to managers, 

summarizing the number and types of 

anomalies detected each shift or day. 

Crucially, the feedback mechanism provided 

by this integration enabled immediate 

corrective action. If the system caught a 

misaligned or broken vial, the line could be 

paused and the item removed before it 

caused a spill or got into a finished batch. 

This immediate response not only prevented 

that single defect from progressing but also 

helped the team investigate and address the 

root cause (for example, if a robot gripper 

was starting to wear out or mis-calibrate, 

causing the mishandling). Over the pilot 

period, the vision system brought to light 

several defects that previously went 

unnoticed by the standard automation. Each 

of these detections was an opportunity to 

fine-tune the equipment and process.  

 

By the end of the integration phase, the 

system was running smoothly alongside the 

existing manufacturing line. The pilot 

demonstrated that a retrofit intelligent vision 

system can be layered onto a traditional 

production setup with manageable effort, 

and without requiring a complete overhaul 

of the legacy equipment. The key 

requirements were ensuring network 

compatibility, developing the interface 

between the AI system and the line control, 

and educating the operational staff on the 

new tool. 

Results & Metrics 
 

The implementation of the computer vision 

and IIoT solution yielded clear 

improvements in quality control 

performance and operational efficiency. 

Both technical metrics and business-related 

outcomes were recorded: 

 

High Anomaly Detection Accuracy: As 

noted earlier, the vision model achieved 

approximately 93.3% recall in detecting 

defective or mishandled vials, with about 

71.9% precision. This means most true 

defects were caught by the system, 

drastically reducing the chance of a bad 

product slipping through. The false alert rate 

was low enough to be practical on the line. 

An F1 score of ~88.9% reflects a strong 

overall balance of catching defects while 

minimizing noise. These figures represent a 

significant improvement over baseline 

manual or periodic inspection performance. 

In fact, compared to an estimated ~4% 

defect miss rate before, the automated 

system recovered most of that lost yield, 

ensuring that nearly all products leaving the 

line met quality standards. 

 

Reduced Scrap and Waste: During the 

pilot, every time a vial was identified as 

faulty, it was removed before further 

materials were added or value was lost. By 

preventing defective units from continuing 

down the line, the company avoids 

compounding waste (for example, adding 

expensive ingredients to a vial that is 

cracked would be pure waste). Thanks to 

real-time detection, the scrap rate related to 

vial mishandling dropped dramatically. In 

quantitative terms, the previously observed 

4% mishandling rate was cut down to well 
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under 1% in the test runs. This implies a 

potential 75% or more reduction in scrap 

due to this specific issue. The savings come 

not just from the containers themselves, but 

also from conserving the contents and 

processing resources that would have been 

wasted on defective units. This directly 

translates to cost savings. 

 

Improved Throughput and Efficiency: 

With fewer incidents of undetected defects, 

the manufacturing line experienced less 

unexpected downtime. In the past, a broken 

vial might not have been noticed until it 

caused a bigger problem (spillage requiring 

cleanup or a machine jam), forcing a line 

stoppage. Under the new system, such issues 

were caught and dealt with proactively. 

Operators could remove the bad part and 

resume production quickly, rather than 

reactively responding to a downstream 

failure. Over the three-month pilot, the 

production throughput became more 

consistent. Although the sample size was 

limited, the trend suggested that catching 

and fixing small problems early prevented 

larger disruptions. This contributes to higher 

Overall Equipment Effectiveness (OEE), a 

key manufacturing performance metric, by 

improving the quality and availability 

components of OEE. 

 

Data for Process Improvement: All 

detected anomaly events were logged to the 

cloud, creating a valuable dataset for 

engineering analysis. Reviewing this data, 

the team identified patterns, for instance, 

noticing that most mishandling events 

occurred during a specific motion of the 

robot or with a certain type of vial. These 

insights are being used to adjust machine 

parameters and operator procedures to 

further reduce error rates. In essence, 

beyond the immediate quality control, the 

system provided a learning tool for 

continuous improvement. The company can 

track quality incidents over time and 

measure the impact of any process changes 

on defects. This data-driven approach is a 

leap forward from previous reliance on 

anecdotal operator reports or periodic 

inspections. 

 

Overall, the results from the CSI testbed 

pilot strongly indicate that an AI-driven 

vision inspection system, integrated with 

IIoT connectivity, can elevate manufacturing 

performance. High detection accuracy was 

achieved and maintained in real time, and 

this led to tangible operational benefits like 

scrap reduction and smoother production 

runs. In a production environment scaling up 

from this pilot, even a few percentages 

points improvement in yield and uptime can 

translate to substantial annual savings and 

capacity gains. 

Business Impact 
Implementing real-time computer vision for 

quality assurance does more than just 

improve technical metrics; it delivers 

concrete business benefits. From the case 

study results, several key impacts for 

manufacturing operations and business 

performance can be identified: 

 

Cost Savings through Waste Reduction: 

By catching defective products early, the 

system prevents wasted materials and labor. 

Every vial removed before mixing or filling 

saves the cost of ingredients and processing 

that would have gone into a faulty product. 

Over time, these savings add up 

significantly. For example, if a production 

line handles millions of units per year, 

eliminating a 3–4% scrap rate means tens of 

thousands of units saved. This directly 

lowers the cost of goods sold and improves 

profit margins. Additionally, reducing scrap 

aligns with lean manufacturing principles 
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and sustainability goals (less waste disposal 

and rework). 

 

Protection Against Recalls and Liability: 

In industries with strict quality requirements, 

shipping a defective or contaminated 

product can be extremely costly not only in 

financial terms (recall logistics, refunds, 

regulatory fines) but also in damage to brand 

reputation. An automated vision QA system 

provides an insurance layer by greatly 

reducing the likelihood of a bad product 

reaching customers. This protects the 

business from the nightmare scenario of a 

recall or a product failure in the field. For 

sectors like pharma or food, such protection 

is invaluable and can preserve market trust. 

 

Improved Production Efficiency and 

Capacity: Fewer quality incidents mean the 

production line can run more smoothly with 

less downtime for troubleshooting issues. 

The ability to identify and remove a bad part 

on the fly avoids the need to halt the entire 

line later when the problem surfaces. This 

increases the effective throughput of the 

line, more sellable products are produced 

per shift when there are fewer interruptions 

and rejections. In some cases, this might 

defer or reduce the need for capital 

investment in additional capacity, as 

improving quality has the effect of getting a 

better output from the same line. 

 

Data-Driven Decision Making: The 

integration of cloud analytics means 

managers and engineers have access to real-

time and historical data on quality 

performance. This visibility supports better 

decision-making at the business level. 

Trends and reports from the system can 

justify process changes or guide 

maintenance schedules (e.g., “Machine X is 

causing 80% of defects, invest in its 

upgrade”). It also enables quantifying ROI 

for quality initiatives, for instance, showing 

how the vision system improved yield by 

X% and calculating the dollar savings. 

Having solid data makes it easier for 

decision-makers to allocate resources and 

set priorities for continuous improvement 

projects. 

 

Competitive Advantage and Digital 

Transformation: Embracing advanced 

quality control technology sends a message 

to stakeholders (customers, partners, and 

even employees) that the company is at the 

forefront of manufacturing innovation. For 

customers, this can be a selling point, they 

can expect more consistent, high-quality 

products. For the business, it is a step 

towards full digital transformation, where 

operations are smarter, more responsive, and 

more integrated. In a competitive market, 

the companies that effectively leverage AI 

and IIoT can differentiate themselves by 

offering superior quality and reliability. In 

many cases, this can open new business 

opportunities or markets that demand 

stringent quality (for example, being able to 

meet higher standards could allow entry into 

medical or aerospace manufacturing 

contracts). 

 

It is important to note that achieving these 

business benefits does require investment 

and strategic alignment. The company must 

invest in hardware, software, and training 

for such a system, and ensure that the 

operations team is prepared to work with it. 

However, as demonstrated, the payoff comes 

in the form of operational excellence and 

risk mitigation. An analysis of this pilot 

suggests that the return on investment (ROI) 

for full-scale deployment could be very 

attractive, especially when considering the 

avoided costs of poor quality. 
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Replication Considerations 
While the pilot implementation was 

successful, replicating this computer vision 

and IIoT solution in other manufacturing 

settings requires careful consideration of 

several factors. Organizations looking to 

adopt a similar approach should be mindful 

of the following challenges and 

requirements: 

 

• Integration with Cloud Platforms: 

The Complexity of Setup. One of the 

primary challenges encountered was 

connecting the edge system with a 

cloud service (in our case, Microsoft 

Azure). Cloud platforms often have 

complex architectures that require 

specific configurations, security 

credentials, and middleware to link 

with on-premises devices. There was 

a steep learning curve to ensure that 

the Jetson edge device could reliably 

communicate with Azure’s IoT 

services and data storage. Companies 

with limited cloud computing 

experience may need to invest in 

specialist support or training. It’s 

crucial to plan for secure data 

transmission, proper network 

configuration (firewalls, protocols), 

and possibly adapt the solution to 

whichever cloud provider is in use 

(AWS, Google Cloud, etc., if not 

Azure). Early engagement with IT 

and cloud experts is recommended to 

smooth this integration. 

 

• Edge Processing Power: Hardware 

selection. The choice of edge 

computing hardware can make or 

break the feasibility of real-time 

vision analytics. In our project, we 

initially attempted to use the 

NVIDIA Jetson Nano, an affordable 

and compact device. However, the 

Jetson Nano proved underpowered 

for the computational load of the 

SSD MobileNet model running in 

real time. The video processing and 

inference tasks overwhelmed the 

Nano, leading to lag and dropped 

frames. We had to upgrade to the 

Jetson AGX Xavier, which offers 

significantly more processing power 

(both CPU and GPU) and could 

comfortably handle the model’s 

requirements. This switch entailed 

additional configuration work and 

optimization to utilize the new 

hardware effectively. The lesson for 

replication is to carefully match your 

AI model’s complexity with the 

capabilities of the edge device. If the 

production line speed is very high or 

the model is complex, you may need 

higher-end hardware (or even an 

edge server) to meet the response 

time needs. Under-spec’d hardware 

can bottleneck the whole system. 

 

• Hardware Lifecycle and 

Availability: Product longevity. A 

related consideration is the 

availability and support for the 

chosen hardware. Technology 

evolves quickly; notably, both the 

Jetson Nano and the Jetson AGX 

Xavier used in our project have been 

discontinued by NVIDIA as of 2023. 

This presents a challenge for scaling 

up: acquiring more of these units is 

difficult, and existing units might not 

receive long-term software support 

or updates. For future deployments, 

it will be necessary to identify 

current hardware alternatives. 

NVIDIA’s Jetson Orin series (such as 

the AGX Orin or the Orin Nano) are 

the modern successors, offering even 

greater performance. Adopting a new 
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device means you may need to 

refactor some of the software (e.g., 

drivers, libraries, model 

optimizations) and thoroughly re-test 

the system. Ensuring that your 

solution is not tied to an obsolete 

platform is important for longevity. It 

may also be wise to design the 

system in a modular way so that the 

edge computing module can be 

swapped out or upgraded with 

minimal disruption, should hardware 

lines be discontinued. 

 

• Technical Expertise and Training: 

Skill requirements. Implementing an 

AI-powered IIoT solution demands a 

mix of expertise across domains of 

computer vision and AI, embedded 

systems/edge computing, industrial 

automation, and cloud infrastructure. 

In our case, success was driven by a 

team that could cover these areas, 

but not every manufacturing 

organization has such a team readily 

available. There is often a significant 

learning curve for staff who are 

unfamiliar with programming AI 

models or configuring cloud 

services. Companies aiming to 

replicate this should consider how to 

acquire the necessary skills: this 

could involve hiring specialists, 

partnering with tech providers or 

universities, or investing in training 

programs for current engineers. In 

addition, once the system is 

deployed, ongoing support and 

maintenance are needed (for 

instance, updating the model if the 

product changes, or managing cloud 

costs and security). Establishing a 

support plan whether through 

internal capability or external service 

contracts – is a part of the adoption 

strategy. 

 

• Development Time and 

Customization: Project timeline. 

Unlike off-the-shelf inspection 

equipment, a custom AI vision 

system requires a development 

period for data collection, model 

training, and solution refinement. In 

our project, initial dataset gathering 

and model training took a significant 

amount of time (several weeks for a 

usable model, and a few months to 

reach optimal performance with 

iterative improvements). Each new 

implementation may need its own 

model training if the products or 

defect types differ, which can extend 

the project timeline. Businesses 

should be prepared for a phased 

approach: a proof-of-concept phase, 

followed by pilot deployment, and 

then scaling. It’s important to 

manage expectations that while the 

technology is powerful, it’s not a 

plug-and-play quick fix it involves a 

custom engineering effort. However, 

once in place, the system can be a 

lasting asset, and the experience 

gained will make future projects 

faster. 

 

 

 
Figure 4 showing a detailed end-to-end wire architecture 
for image capture and object detection training 
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In summary, replicating the success of this 

pilot in a different factory requires 

addressing cloud integration, ensuring 

sufficient computing hardware, planning for 

hardware/software updates, and having the 

right expertise on board. None of these 

challenges is insurmountable; many 

companies have begun to navigate them as 

part of their digital transformation journeys. 

The key is planning and knowledge sharing. 

Learning from pilot projects (such as the one 

detailed in this paper) can help identify 

pitfalls early. Manufacturers may also 

consider starting with a smaller scope (e.g., 

one production cell or one defect type) to 

gain confidence before scaling up. By being 

mindful of the considerations above, an 

organization can increase the likelihood of 

smooth adoption and maximize the return 

from its investment in smart quality control 

systems. 

Conclusion 
The case study of integrating computer 

vision and IIoT in a manufacturing testbed 

vividly demonstrates the potential benefits 

of embracing advanced technology for 

quality assurance and efficiency. By 

augmenting an automated production line 

with intelligent vision capabilities, we were 

able to detect and mitigate issues that 

traditional systems overlooked. The 

outcome was a notable reduction in defects 

and waste, along with more stable and 

efficient operations, all of which are highly 

compelling results for any manufacturing 

enterprise. 

 

This success, however, comes with a 

nuanced understanding of what it takes to 

implement such solutions. The project 

underscored that achieving a high-

performance smart manufacturing system 

isn’t just about buying new technology; it 

requires a combination of the right tools, 

technical know-how, and strategic planning. 

Challenges like cloud integration 

complexities, hardware changes, and skill 

gaps must be proactively managed. For 

small and medium-sized manufacturers 

particularly, the initial investment (in 

equipment, integration effort, and training) 

is a significant consideration. It must be 

weighed against the long-term gains in 

quality, savings, and competitive edge. The 

evidence from this pilot suggests that, with 

proper execution, the long-term business 

benefits can far outweigh the upfront costs. 

Early adopters will likely gain a market 

advantage through superior quality control 

and data-driven process optimization. 

 

Looking ahead, the landscape of smart 

manufacturing will continue to evolve. New 

hardware (such as the latest generation of 

edge AI devices) and emerging technologies 

(like 5G connectivity and more sophisticated 

machine learning algorithms) are steadily 

lowering barriers and expanding capabilities 

for factory automation. Future projects 

building on this work should explore these 

advancements – for instance, leveraging 

more powerful yet energy-efficient 

processors, or integrating predictive 

maintenance AI models alongside quality 

control. Additionally, fostering partnerships 

between industry practitioners, technology 

providers, and academic research (as 

exemplified by the CSI testbed 

collaboration) can accelerate innovation and 

help disseminate best practices. 

 

In conclusion, enhancing manufacturing 

efficiency through computer vision and IIoT 

integration is not only feasible but highly 

advantageous. It represents a significant step 

towards the broader goal of digital 

transformation in manufacturing. 

Organizations that invest in understanding 
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and deploying these technologies will be 

better equipped to ensure quality, improve 

efficiency, and remain resilient in a rapidly 

advancing industrial era. This white paper 

has provided a roadmap and insights from a 

real implementation to guide stakeholders 

interested in replicating or scaling such 

solutions. By learning from these insights 

and remaining adaptable to new 

developments, manufacturers can 

confidently navigate the journey toward 

smarter, more efficient production systems. 
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Figure 5 Labeled data from testbed 

 
 

 
Figure 6 Distribution data 

 

 
Figure 7 Chart data 

 


