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Executive Summary

This white paper outlines how an integrated computer vision and Industrial Internet of Things
(HoT) solution can significantly improve manufacturing quality control and efficiency. It
addresses a common challenge in modern manufacturing: subtle production anomalies that
escape traditional automated detection and lead to waste, downtime, or product recalls. The
paper presents a case study from the Connected Systems Institute’s (CSI) advanced
manufacturing testbed at the University of Wisconsin—Milwaukee, where a custom machine
vision system was deployed to monitor product quality in real-time. Leveraging an edge Al
device (NVIDIA Jetson) and cloud analytics (Microsoft Azure), the solution was able to detect
defects on a high-speed production line and provide immediate feedback to operators. As a
result, previously unnoticed defects were identified and removed early, reducing scrap and
improving overall throughput. The following sections discuss the industry context and problem,
detail the technology solution and its implementation, report on results and key metrics, and
examine the business impact. Finally, the paper provides considerations for replicating this
approach in other manufacturing settings, highlighting potential challenges and requirements

for success.
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Figure 1 University of Wisconsin-Milwaukee CSI
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Industry Context

Modern manufacturing is undergoing a
digital transformation often referred to as
Industry 4.0. This movement integrates
physical production equipment with digital
technologies such as sensors, connectivity,
and intelligent automation. A cornerstone of
Industry 4.0 is the Industrial Internet of
Things (IIoT), which enables plant-floor
devices and machines to communicate data
from the production line to enterprise
systems and cloud platforms in real time.
This connectivity allows for advanced
monitoring, data analysis, and adaptive
control of manufacturing processes. For
example, [IoT systems can track production
parameters, equipment status, and product
quality continuously, leading to insights that
drive efficiency improvements.

However, rapid technological advancement
has also created integration challenges,
especially for small and medium-sized
manufacturers. Many of these firms struggle
to seamlessly implement new Industry 4.0
technologies into legacy systems, resulting
In communication bottlenecks,
inefficiencies, or security vulnerabilities.
Moreover, the human factor is significant:
there is a well-recognized skills gap shortage
of workers with the specialized expertise to
deploy, manage, and maintain advanced
automation and data analytics systems. This
gap can slow down the adoption of cutting-
edge solutions on the factory floor.
Companies find that while technologies like
IIoT and Al promise great benefits,
achieving those benefits in practice requires
not only capital investment but also
workforce development and process
changes.

In response to these trends, industry and
academia have increasingly collaborated to
demonstrate practical solutions and train the
next-generation workforce. One example is
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the Connected Systems Institute (CSI) at
UWM, which hosts an Advanced
Manufacturing Testbed co-developed with
industry leaders (including Rockwell
Automation, FANUC, Endress+Hauser,
Microsoft, and others). This state-of-the-art
facility simulates a modern factory
environment and serves as proving ground
for Industry 4.0 technologies. Research and
pilot projects at CSI focus on areas like
IIoT-driven automation, robotics, and data
analytics. A key topic of interest and the
focus of this white paper is the integration of
computer vision with IIoT to enable
automated, real-time quality assurance. By
experimenting in such an environment,
stakeholders can explore how intelligent
vision systems might transform
manufacturing processes, reduce waste, and
increase productivity in real-world settings.

Problem Statement

Even in highly automated production lines,
quality control gaps can occur. Advanced
robots and machinery perform repetitive
tasks with precision, but they may not
always detect when something goes wrong
in the process. A prime example is the
occasional mishandling of products on the
line events that might be rare and fleeting
yet have significant consequences. In our
study environment (the CSI testbed), an
intermittent anomaly was observed: robotic
arms would sometimes misgrip or jostle
small containers (vials) on the line, causing
a few to be dropped, crushed, or otherwise
damaged. The automated system’s internal
sensors did not flag these incidents;
production would continue as if every item
were intact. This blind spot reflects a
broader challenge in manufacturing: subtle
or rapid anomalies can escape standard
detection, leading to downstream issues.
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On a real factory floor, undetected defects or
mishandled items can disrupt operations and
erode profitability. For instance, a dropped
or broken vial in a batch might spill contents
or contaminate equipment, necessitating
cleanup and unplanned downtime. If a
damaged product isn’t caught and is mixed
into finished goods, the entire lot might be
compromised. In many industries, especially
pharmaceuticals or food & beverage, failing
to catch such defects early can result in
hazardous products reaching customers,
with potentially deadly consequences and
massive recalls. Even when safety isn’t at
stake, shipping substandard products harms
customer trust and often forces expensive
rework or replacement of goods.

1) Several underlying factors contribute
to this quality control gap:

Intermittent Automation Failures:

No matter how advanced, automation
systems can experience occasional errors
(e.g. arobot’s grip slipping). These events
may happen in a split second. Traditional
sensors or logic controllers might not
recognize a brief mishap, especially if the
process flow continues normally afterward.
In the CSI testbed, about 4% of vials were
mishandled over a five-month observation
period non-trivial defect rate given high
production volume.

2) Inadequate Real-Time Detection:
Existing quality control mechanisms often
rely on scheduled inspections, basic sensors,
or manual checks. They are not always
equipped to catch fast, small-scale
irregularities. In our consultations with
industry experts, we found that even
sophisticated manufacturing lines can have
an undetected defect rate of roughly 2-3%.
Tiny cracks, minor spills, or momentary
misalignments might pass unnoticed if they
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occur between inspection points or outside
sensor parameters. This highlights the need
for more intelligent, continuous monitoring
systems.

3) Operational and Financial Impact:
Each undetected anomaly directly translates
into waste and inefficiency. A mishandled
container results in lost material (the product
inside becomes scrap) and potentially
wasted packaging or ingredients in
subsequent processes. Over time, these
losses added up, and the data from our
testbed suggested that unchecked vial
mishandling could lead to significant annual
waste costs. Moreover, suppose defects slip
through to later stages. In that case, they
might cause equipment wear or failures (if,
say, a broken piece jams a machine) and
degrade inventory accuracy (the system
assumes more good products were made
than were). In the worst case, defective
products reaching customers trigger recalls
and legal liabilities, impacting revenue and
brand reputation.

Figure 2 CSl's Advanced Manufacturing testbed

In summary, the manufacturing sector faces
a critical challenge: how to detect and
address subtle production anomalies in
real time to ensure dependable quality and
high efficiency. The problem is not only
identifying obvious errors but also spotting
those “hidden” flaws that occur sporadically
and are easily missed by conventional
automation. As the push toward digital
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manufacturing continues, solving this
problem becomes essential for maintaining
productivity and competitive advantage.

Technology Solution

To address the quality control gap, a custom
computer vision system integrated with IloT
connectivity was developed and deployed in
the testbed. The solution adds a layer of
intelligent visual inspection to the existing
manufacturing line, enabling automatic
detection of anomalies as they occur. The
design centers on two key technological
components: edge-based machine vision and
cloud-based analytics.

Edge Vision System: At the core of the
solution is a smart camera setup on the
production line that monitors each product
in real time. In practice, this consists of a
high-quality USB industrial camera linked
to an NVIDIA Jetson AGX Xavier edge
computing device. The Jetson Xavier is a
powerful, GPU-accelerated small computer
capable of running advanced Al algorithms
on-site (at the “edge” of the network). A
tailored object detection model (based on the
Single Shot Detector MobileNet (SSD
MobileNet) architecture) is deployed on the
device to analyze each video frame for signs
of defects or mishandling. This model was
chosen for its balance of speed and accuracy,
crucial for keeping up with high-speed
manufacturing. When a vial is being handled
incorrectly or shows a defect (e.g., cracks,
spillage, or an abnormal position), the vision
system identifies it within milliseconds. The
edge device can then flag the event
immediately for response. By performing
this analysis locally on the Jetson (rather
than sending every frame to the cloud), the
system minimizes latency and continues to
work even if the internet connection is
temporarily lost. This configuration helps
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prevent material wastage by catching issues
the moment they occur on the line.
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Figure 3 High-level architecture of the computer vision
quality control solution, combining an edge Al device

Detection Performance: The machine vision
model underwent training and tuning to
achieve robust performance in the testbed
environment. During evaluation, it
demonstrated a high level of accuracy in
detecting the target anomalies. Key
performance metrics include:

e Precision: ~71.9% — meaning when
the system reported a defect, roughly
72% of the time it was a true positive
(actual anomaly). A solid precision
reduces false alarms so operators are
not overburdened by unnecessary
stops.

e Recall: ~93.3% — meaning the
system caught approximately 93% of
all true defects on the line. High
recall is critical in quality control to
ensure almost no real issue goes
unnoticed.

e F1 Score: ~88.9% — the harmonic
mean of precision and recall,
indicating overall effectiveness of

Shamar Webster

Dashboard

Visualization



the detection algorithm at an 80%
confidence threshold.

These metrics indicate that the vision system
performs at a level that meets or exceeds
typical industry standards for quality
inspection. In other words, the Al is
correctly identifying most defects while
keeping false alerts to a manageable level.
Such performance was achieved through
careful model selection (SSD MobileNet
proved both agile and effective on the Jetson
platform) and iterative testing. (Figure 1
illustrates the architecture of this edge vision
system and how it connects to cloud
analytics.)

Data Transmission and Cloud Analytics:
When the edge vision system detects an
anomaly, it doesn’t just alert local operators,
but it also streams data to the cloud for
further analysis. Specifically, the Jetson
device sends a packet of information to a
Microsoft Azure cloud platform endpoint.
This packet can include the timestamp of the
event, details about the detected anomaly,
and even short video snippets or images of
the defect. In Azure, this data enters an
advanced analytics pipeline. The cloud
infrastructure aggregates and analyzes these
events over time, using Azure’s powerful
data processing and machine learning
services. By doing so, it can identify trends
or recurring issues and generate predictive
insights. For example, cloud analysis might
reveal that anomalies happen more
frequently on a particular machine or shift,
suggesting a preventative maintenance need
or operator training opportunity. The cloud
platform can also continuously improve the
edge detection algorithm by analyzing false
positives/negatives and retraining the model
with more diverse data. This feedback loop
edge detection feeding cloud analysis, which
in turn refines edge intelligence, helps boost
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the accuracy and efficiency of the overall
system over the long run. Additionally,
having data in the cloud allows management
to access dashboard reports on quality
performance from anywhere and integrates
with broader enterprise quality management
systems.

Implementation & Integration
Implementing this computer vision IloT
solution in the CSI advanced manufacturing
testbed required careful planning and
integration with existing processes. The
deployment was carried out as a pilot project
over a span of three months in a controlled
setting to ensure minimal disruption and to
measure outcomes.

Pilot Setup: The edge vision system
(camera and Jetson device) was physically
installed on the production line of the
testbed, focusing on a critical handling point
for the vials. The Jetson was configured to
interface with the testbed’s network so that
detection events could be communicated
both to on-site personnel and to the Azure
cloud. An initial challenge encountered was
ensuring that the Jetson’s output could
trigger alerts within the testbed’s control
system (which is composed of industrial
PLCs and manufacturing execution
software). This was solved by integrating
Jetson’s signals with the testbed’s existing
alarm/notification system, enabling
automatic stoppage or operator alerts when a
defect was detected. Concurrently, Azure
cloud services were set up to receive
anomaly event data from Jetson through a
secure [oT messaging protocol.

Integration Process: Once the hardware
and connections were in place, the system
underwent a series of trials. Approximately
150 vials (across three different product
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formulations run on the CSI line) were used
in test runs that simulated regular production
conditions. During these runs, any time the
vision model flagged a vial as damaged or
mishandled, the system would log the event
and notify operators in real time. Operators
and engineers were thus able to witness how
the Al "watchdog" functioned alongside the
normal automation. The integration allowed
the generation of real-time alerts on the
factory floor, for example, a light signal or a
dashboard pop-up would indicate “Defect
detected on Line 1.” Additionally, the
system sent analytical reports to managers,
summarizing the number and types of
anomalies detected each shift or day.
Crucially, the feedback mechanism provided
by this integration enabled immediate
corrective action. If the system caught a
misaligned or broken vial, the line could be
paused and the item removed before it
caused a spill or got into a finished batch.
This immediate response not only prevented
that single defect from progressing but also
helped the team investigate and address the
root cause (for example, if a robot gripper
was starting to wear out or mis-calibrate,
causing the mishandling). Over the pilot
period, the vision system brought to light
several defects that previously went
unnoticed by the standard automation. Each
of these detections was an opportunity to
fine-tune the equipment and process.

By the end of the integration phase, the
system was running smoothly alongside the
existing manufacturing line. The pilot
demonstrated that a retrofit intelligent vision
system can be layered onto a traditional
production setup with manageable effort,
and without requiring a complete overhaul
of the legacy equipment. The key
requirements were ensuring network
compatibility, developing the interface
between the Al system and the line control,
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and educating the operational staff on the
new tool.

Results & Metrics

The implementation of the computer vision
and IIoT solution yielded clear
improvements in quality control
performance and operational efficiency.
Both technical metrics and business-related
outcomes were recorded:

High Anomaly Detection Accuracy: As
noted earlier, the vision model achieved
approximately 93.3% recall in detecting
defective or mishandled vials, with about
71.9% precision. This means most true
defects were caught by the system,
drastically reducing the chance of a bad
product slipping through. The false alert rate
was low enough to be practical on the line.
An F1 score of ~88.9% reflects a strong
overall balance of catching defects while
minimizing noise. These figures represent a
significant improvement over baseline
manual or periodic inspection performance.
In fact, compared to an estimated ~4%
defect miss rate before, the automated
system recovered most of that lost yield,
ensuring that nearly all products leaving the
line met quality standards.

Reduced Scrap and Waste: During the
pilot, every time a vial was identified as
faulty, it was removed before further
materials were added or value was lost. By
preventing defective units from continuing
down the line, the company avoids
compounding waste (for example, adding
expensive ingredients to a vial that is
cracked would be pure waste). Thanks to
real-time detection, the scrap rate related to
vial mishandling dropped dramatically. In
quantitative terms, the previously observed
4% mishandling rate was cut down to well
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under 1% in the test runs. This implies a
potential 75% or more reduction in scrap
due to this specific issue. The savings come
not just from the containers themselves, but
also from conserving the contents and
processing resources that would have been
wasted on defective units. This directly
translates to cost savings.

Improved Throughput and Efficiency:
With fewer incidents of undetected defects,
the manufacturing line experienced less
unexpected downtime. In the past, a broken
vial might not have been noticed until it
caused a bigger problem (spillage requiring
cleanup or a machine jam), forcing a line
stoppage. Under the new system, such issues
were caught and dealt with proactively.
Operators could remove the bad part and
resume production quickly, rather than
reactively responding to a downstream
failure. Over the three-month pilot, the
production throughput became more
consistent. Although the sample size was
limited, the trend suggested that catching
and fixing small problems early prevented
larger disruptions. This contributes to higher
Overall Equipment Effectiveness (OEE), a
key manufacturing performance metric, by
improving the quality and availability
components of OEE.

Data for Process Improvement: All
detected anomaly events were logged to the
cloud, creating a valuable dataset for
engineering analysis. Reviewing this data,
the team identified patterns, for instance,
noticing that most mishandling events
occurred during a specific motion of the
robot or with a certain type of vial. These
insights are being used to adjust machine
parameters and operator procedures to
further reduce error rates. In essence,
beyond the immediate quality control, the
system provided a learning tool for
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continuous improvement. The company can
track quality incidents over time and
measure the impact of any process changes
on defects. This data-driven approach is a
leap forward from previous reliance on
anecdotal operator reports or periodic
inspections.

Overall, the results from the CSI testbed
pilot strongly indicate that an Al-driven
vision inspection system, integrated with
[IoT connectivity, can elevate manufacturing
performance. High detection accuracy was
achieved and maintained in real time, and
this led to tangible operational benefits like
scrap reduction and smoother production
runs. In a production environment scaling up
from this pilot, even a few percentages
points improvement in yield and uptime can
translate to substantial annual savings and
capacity gains.

Business Impact

Implementing real-time computer vision for
quality assurance does more than just
improve technical metrics; it delivers
concrete business benefits. From the case
study results, several key impacts for
manufacturing operations and business
performance can be identified:

Cost Savings through Waste Reduction:
By catching defective products early, the
system prevents wasted materials and labor.
Every vial removed before mixing or filling
saves the cost of ingredients and processing
that would have gone into a faulty product.
Over time, these savings add up
significantly. For example, if a production
line handles millions of units per year,
eliminating a 3—4% scrap rate means tens of
thousands of units saved. This directly
lowers the cost of goods sold and improves
profit margins. Additionally, reducing scrap
aligns with lean manufacturing principles
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and sustainability goals (less waste disposal
and rework).

Protection Against Recalls and Liability:
In industries with strict quality requirements,
shipping a defective or contaminated
product can be extremely costly not only in
financial terms (recall logistics, refunds,
regulatory fines) but also in damage to brand
reputation. An automated vision QA system
provides an insurance layer by greatly
reducing the likelihood of a bad product
reaching customers. This protects the
business from the nightmare scenario of a
recall or a product failure in the field. For
sectors like pharma or food, such protection
is invaluable and can preserve market trust.

Improved Production Efficiency and
Capacity: Fewer quality incidents mean the
production line can run more smoothly with
less downtime for troubleshooting issues.
The ability to identify and remove a bad part
on the fly avoids the need to halt the entire
line later when the problem surfaces. This
increases the effective throughput of the
line, more sellable products are produced
per shift when there are fewer interruptions
and rejections. In some cases, this might
defer or reduce the need for capital
investment in additional capacity, as
improving quality has the effect of getting a
better output from the same line.

Data-Driven Decision Making: The
integration of cloud analytics means
managers and engineers have access to real-
time and historical data on quality
performance. This visibility supports better
decision-making at the business level.
Trends and reports from the system can
justify process changes or guide
maintenance schedules (e.g., “Machine X is
causing 80% of defects, invest in its
upgrade”). It also enables quantifying ROI
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for quality initiatives, for instance, showing
how the vision system improved yield by
X% and calculating the dollar savings.
Having solid data makes it easier for
decision-makers to allocate resources and
set priorities for continuous improvement
projects.

Competitive Advantage and Digital
Transformation: Embracing advanced
quality control technology sends a message
to stakeholders (customers, partners, and
even employees) that the company is at the
forefront of manufacturing innovation. For
customers, this can be a selling point, they
can expect more consistent, high-quality
products. For the business, it is a step
towards full digital transformation, where
operations are smarter, more responsive, and
more integrated. In a competitive market,
the companies that effectively leverage Al
and IIoT can differentiate themselves by
offering superior quality and reliability. In
many cases, this can open new business
opportunities or markets that demand
stringent quality (for example, being able to
meet higher standards could allow entry into
medical or aerospace manufacturing
contracts).

It is important to note that achieving these
business benefits does require investment
and strategic alignment. The company must
invest in hardware, software, and training
for such a system, and ensure that the
operations team is prepared to work with it.
However, as demonstrated, the payoff comes
in the form of operational excellence and
risk mitigation. An analysis of this pilot
suggests that the return on investment (ROI)
for full-scale deployment could be very
attractive, especially when considering the
avoided costs of poor quality.
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Replication Considerations

While the pilot implementation was
successful, replicating this computer vision
and IIoT solution in other manufacturing
settings requires careful consideration of
several factors. Organizations looking to
adopt a similar approach should be mindful
of the following challenges and
requirements:

e Integration with Cloud Platforms:
The Complexity of Setup. One of the
primary challenges encountered was
connecting the edge system with a
cloud service (in our case, Microsoft
Azure). Cloud platforms often have
complex architectures that require
specific configurations, security
credentials, and middleware to link
with on-premises devices. There was
a steep learning curve to ensure that
the Jetson edge device could reliably
communicate with Azure’s [oT
services and data storage. Companies
with limited cloud computing
experience may need to invest in
specialist support or training. It’s
crucial to plan for secure data
transmission, proper network
configuration (firewalls, protocols),
and possibly adapt the solution to
whichever cloud provider is in use
(AWS, Google Cloud, etc., if not
Azure). Early engagement with IT
and cloud experts is recommended to
smooth this integration.

e Edge Processing Power: Hardware
selection. The choice of edge
computing hardware can make or
break the feasibility of real-time
vision analytics. In our project, we
initially attempted to use the
NVIDIA Jetson Nano, an affordable
and compact device. However, the
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Jetson Nano proved underpowered
for the computational load of the
SSD MobileNet model running in
real time. The video processing and
inference tasks overwhelmed the
Nano, leading to lag and dropped
frames. We had to upgrade to the
Jetson AGX Xavier, which offers
significantly more processing power
(both CPU and GPU) and could
comfortably handle the model’s
requirements. This switch entailed
additional configuration work and
optimization to utilize the new
hardware effectively. The lesson for
replication is to carefully match your
Al model’s complexity with the
capabilities of the edge device. If the
production line speed is very high or
the model is complex, you may need
higher-end hardware (or even an
edge server) to meet the response
time needs. Under-spec’d hardware
can bottleneck the whole system.

Hardware Lifecycle and
Availability: Product longevity. A
related consideration is the
availability and support for the
chosen hardware. Technology
evolves quickly; notably, both the
Jetson Nano and the Jetson AGX
Xavier used in our project have been
discontinued by NVIDIA as of 2023.
This presents a challenge for scaling
up: acquiring more of these units is
difficult, and existing units might not
receive long-term software support
or updates. For future deployments,
it will be necessary to identify
current hardware alternatives.
NVIDIA’s Jetson Orin series (such as
the AGX Orin or the Orin Nano) are
the modern successors, offering even
greater performance. Adopting a new
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device means you may need to

refactor some of the software (e.g.,

drivers, libraries, model

optimizations) and thoroughly re-test

the system. Ensuring that your
solution is not tied to an obsolete

platform is important for longevity. It

may also be wise to design the

system in a modular way so that the

edge computing module can be
swapped out or upgraded with

minimal disruption, should hardware

lines be discontinued.

e Technical Expertise and Training:
Skill requirements. Implementing an
Al-powered IloT solution demands a
mix of expertise across domains of
computer vision and Al, embedded
systems/edge computing, industrial
automation, and cloud infrastructure.
In our case, success was driven by a
team that could cover these areas,

but not every manufacturing

organization has such a team readily
available. There is often a significant

learning curve for staff who are
unfamiliar with programming Al
models or configuring cloud
services. Companies aiming to

replicate this should consider how to

acquire the necessary skills: this
could involve hiring specialists,
partnering with tech providers or

universities, or investing in training
programs for current engineers. In

addition, once the system is
deployed, ongoing support and
maintenance are needed (for

instance, updating the model if the
product changes, or managing cloud
costs and security). Establishing a

support plan whether through

internal capability or external service
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contracts — is a part of the adoption
strategy.

Development Time and
Customization: Project timeline.
Unlike off-the-shelf inspection
equipment, a custom Al vision
system requires a development
period for data collection, model
training, and solution refinement. In
our project, initial dataset gathering
and model training took a significant
amount of time (several weeks for a
usable model, and a few months to
reach optimal performance with
iterative improvements). Each new
implementation may need its own
model training if the products or
defect types differ, which can extend
the project timeline. Businesses
should be prepared for a phased
approach: a proof-of-concept phase,
followed by pilot deployment, and
then scaling. It’s important to
manage expectations that while the
technology is powerful, it’s not a
plug-and-play quick fix it involves a
custom engineering effort. However,
once in place, the system can be a
lasting asset, and the experience
gained will make future projects
faster.
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Figure 4 showing a detailed end-to-end wire architecture
for image capture and object detection training
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In summary, replicating the success of this
pilot in a different factory requires
addressing cloud integration, ensuring
sufficient computing hardware, planning for
hardware/software updates, and having the
right expertise on board. None of these
challenges is insurmountable; many
companies have begun to navigate them as
part of their digital transformation journeys.
The key is planning and knowledge sharing.
Learning from pilot projects (such as the one
detailed in this paper) can help identify
pitfalls early. Manufacturers may also
consider starting with a smaller scope (e.g.,
one production cell or one defect type) to
gain confidence before scaling up. By being
mindful of the considerations above, an
organization can increase the likelihood of
smooth adoption and maximize the return
from its investment in smart quality control
systems.

Conclusion

The case study of integrating computer
vision and IIoT in a manufacturing testbed
vividly demonstrates the potential benefits
of embracing advanced technology for
quality assurance and efficiency. By
augmenting an automated production line
with intelligent vision capabilities, we were
able to detect and mitigate issues that
traditional systems overlooked. The
outcome was a notable reduction in defects
and waste, along with more stable and
efficient operations, all of which are highly
compelling results for any manufacturing
enterprise.

This success, however, comes with a
nuanced understanding of what it takes to
implement such solutions. The project
underscored that achieving a high-
performance smart manufacturing system
isn’t just about buying new technology; it
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requires a combination of the right tools,
technical know-how, and strategic planning.
Challenges like cloud integration
complexities, hardware changes, and skill
gaps must be proactively managed. For
small and medium-sized manufacturers
particularly, the initial investment (in
equipment, integration effort, and training)
is a significant consideration. It must be
weighed against the long-term gains in
quality, savings, and competitive edge. The
evidence from this pilot suggests that, with
proper execution, the long-term business
benefits can far outweigh the upfront costs.
Early adopters will likely gain a market
advantage through superior quality control
and data-driven process optimization.

Looking ahead, the landscape of smart
manufacturing will continue to evolve. New
hardware (such as the latest generation of
edge Al devices) and emerging technologies
(like 5G connectivity and more sophisticated
machine learning algorithms) are steadily
lowering barriers and expanding capabilities
for factory automation. Future projects
building on this work should explore these
advancements — for instance, leveraging
more powerful yet energy-efficient
processors, or integrating predictive
maintenance Al models alongside quality
control. Additionally, fostering partnerships
between industry practitioners, technology
providers, and academic research (as
exemplified by the CSI testbed
collaboration) can accelerate innovation and
help disseminate best practices.

In conclusion, enhancing manufacturing
efficiency through computer vision and [loT
integration is not only feasible but highly
advantageous. It represents a significant step
towards the broader goal of digital
transformation in manufacturing.
Organizations that invest in understanding
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and deploying these technologies will be
better equipped to ensure quality, improve
efficiency, and remain resilient in a rapidly
advancing industrial era. This white paper
has provided a roadmap and insights from a
real implementation to guide stakeholders
interested in replicating or scaling such
solutions. By learning from these insights
and remaining adaptable to new
developments, manufacturers can
confidently navigate the journey toward
smarter, more efficient production systems.
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Figure 6 Distribution data
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