Doctoral


PhD in Public Health: Biostatistics Concentration

About

Why study Biostatistics?

The PhD in Public Health with a concentration in Biostatistics builds on the classic public health biostatistics skill and knowledge base and takes advantage of special knowledge of its faculty in the areas of genetics, bioinformatics and big data science. Students have the opportunity to learn and apply statistical genetics in the context of complex disease study, high-throughput computing used in “big data” science and applications in evidence-based patient-centered outcome studies. Courses include topics and material such as interpretation of personalized and evidence-based medicine in the context of public health; basic understanding of genetics and epigenetics; and general “omic” approaches and concepts.

Curriculum

Public Health PhD: Concentration in Biostatistics

Minimum degree requirement is 60 graduate credits beyond the bachelor’s degree (plus an additional 9 credits dedicated toward dissertation writing and research), at least 35 of which must be earned in residence at UWM. The student, in consultation with the major professor, must create a plan of study and submit to the Biostatistics Faculty by the end of the first year. Minimum course requirements for all work requires approximately two to three full years of study.

Credits and Courses

Required Core Ph.D. Courses, 12 credits

PH 702 Introduction to Biostatistics*, 3 cr
PH 704 Principles and Methods of Epidemiology, 3 cr
PH 801 Seminar in Public Health Research, 3 cr
PH 819 Social and Environmental Justice in Public Health, 3 cr

** It is expected that PH 702 will be waived for the majority of PhD students based on prior training, and an additional elective will be substituted

Required Methods Courses, 27 credits

MthStat 761 Mathematics Statistics, 3 cr
MthStat 762 Mathematical Statistics, 3 cr
Math 571 or Math 771 Introduction to Probability Models or Theory of Probability, 3 cr
PH 711 Intermediate Biostatistics, 3 cr
PH 713 Analyzing Observational and Experimental Data, 3 cr
PH 718 Data Management and Visualization in R, 3 cr
PH 813 Practice of Biostatistical Consulting, 3 cr
PH 818 Statistical Computing, 3 cr
PH 911Generalized Linear Models, 3 cr
PH 990 Research and Dissertation, 3cr

Electives, at least 21 credits

Doctoral Thesis, at least 9 credits

PH 990 Research and Dissertation, 3cr repeatable

Please note: All courses subject to change. Please consult the Graduate School Bulletin for the most up-to-date information.

Biostatistics Competencies

Upon graduation, a student completing the requirements for the Ph.D. in Public Health with a concentration in Biostatistics will be able to:

  1. Formulate and test a hypothesis using basic statistical methods.
  2. Apply statistical inference to guide research decision-making relevant to public health problems and issues.
  3. Critically evaluate scientific literature and identify how epidemiological and population health data can be used to answer research questions and inform program development and policy decisions aimed at promoting health equity.
  4. Demonstrate critical thinking skills necessary for formulating research questions, identifying theory to frame research questions, and identify and employ appropriate methodologies for addressing a public health research question.
  5. Apply social and environmental justice framework when asking and addressing research questions impacting the public’s health.
  6. Develop new statistical methodologies to solve problems in biomedical, clinical, public health, or other fields.
  7. Contribute to the body of knowledge in the field of biostatistics by writing and successfully submitting manuscripts for publication in a peer-reviewed journal.
  8. Perform all responsibilities of a statistician in collaborative research; in particular: design studies, manage and analyze data and interpret findings from a variety of biomedical, clinical or public health experimental and observational studies.
  9. Communicate statistical information effectively with individuals with varying degrees of statistical knowledge through written and oral presentations.
  10. Use statistical, bioinformatic and other computing software to organize, analyze, and visualize data.
  11. Review and critique statistical methods and interpretation of results in published research studies, presentations, or reports.
  12. Demonstrate solid theoretical knowledge necessary for the development and study of new statistical methods.
  13. Understand and implement modern statistical approaches emerging in the literature to improve biomedical and public health.

Career

Biostatisticians go on to work in hospitals, for health insurance systems, pharmaceutical companies, companies producing health-related products, or health non-profits, among other opportunities.

Faculty

Research

Faculty expertise in: Genetic determinants of common chronic diseases (including heart disease, bleeding disorders, Type II diabetes, stroke and colorectal cancer); using genomic technologies and bioinformatic and biostatistical techniques to accurately predict risk and treatment response in cancer and cardiovascular disease; major molecular mechanisms and pathways that modulate disease progression; using biomedical informatics, mathematical modeling and simulations to characterize and predict the use of genetics in medical practice and in particular pathology; use of high-throughput genetic technologies such as micro-arrays and next generation sequencers in the discovery and applications of genetics to complex diseases and environmental-gene development pathways; and statistical methods and computational tools to identify genetic variants that influence the susceptibility to complex diseases such as cancer of the breast, colon/rectum, lung and prostate.

Learn more about our research here.

Become a leader for the public’s health.