profile-default

Fred J. Helmstetter

Distinguished Professor
 (414) 229-4903
 Garland Hall 207

Web Site: people.uwm.edu/fjh
Lab Page: Helmstetter Lab

Degree:

Ph.D., Dartmouth College, 1989

Research:

The primary focus of our work is on understanding the neural systems underlying complex psychological phenomena like learning, memory, and emotion. We are interested in how memory is stored in the brain, how experience and learning can modify the nervous system, and how brain systems work together to solve these problems. While the emphasis in my lab is on basic science rather than on neuropathology or mental disorders, some of the fundamental questions we’re addressing can relate to clinical problems. We take a multi-level approach which includes molecular neurobiology, functional brain imaging, and behavioral studies in humans and laboratory animals.

Research projects currently underway include:

  • Studies on the molecular mechanisms involved in long-term memory formation with a focus on neuronal protein synthesis and degradation.
  • Examining some of the neurobiological mechanisms through which motivation and emotion can influence learning and perception.
  • Circuit analysis of fear learning focused on interactions between the amygdala, hippocampus and prefrontal cortex.
  • Functional mapping of brain circuits important for implicit and explicit memory performance using functional magnetic resonance imaging (fMRI) in human volunteers. The role of awareness and consciousness in learning.

I am currently interested in taking new Ph.D. students and postdocs. Federally funded RA positions are available to qualified students. Please feel free to contact me or visit our web site for further details.

Courses Taught:

Psych 254: Physiological Psychology
Psych 355: Introduction to Neuroscience II: From Brain to Behavior
Psych 657: Neurobiology of Learning and Memory
Psych 754: Proseminar in Biological Psychology
Psych 954: Gene Expression and Behavior

Selected Publications

Pedersen, W. S., Balderston, N. L., Miskovich, T. A., Belleau, E. L., Helmstetter, F. J., & Larson, C. L. Disentangling the effects of stimulus novelty and affective valence in the amygdala, hippocampus, and bed nucleus of the stria terminalis. Social, Cognitive, and Affective Neuroscience.
Kwapis, J. L., Jarome, T. J., Ferrara, N. C., & (2017, March). Updating Procedures Can Reorganize the Neural Circuit Supporting a Fear Memory. Helmstetter, F. J. (Ed.). Neuropsychopharmacology.
Jarome, T. J., Ferrara, N. C., Kwapis, J. L., & (2016, January (1st Quarter/Winter)). CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval. Helmstetter, F. J. (Ed.). Neurobiology of Learning & Memory, 128, 103-109.
Hopkins, L. S., Helmstetter, F. J., & Hannula, D. E. (2016). Eye movements are captured by a perceptually simple conditioned stimulus in the absence of explicit contingency knowledge. Emotion, 16, 1157-1171.
Hopkins, L. S., Schultz, D. H., Hannula, D. E., & Helmstetter, F. J. (2015, November). Eye movements index implicit memory expression in fear conditioning. PLoS ONE, 10.
Kwapis, J. L., Jarome, T. J., Lee, J. L., & Helmstetter, F. J. (2015, June). The retrosplenial cortex is involved in the formation of memory for context and trace fear conditioning. Neurobiology of Learning & Memory, 123, 110-116.
Balderston, N. L., Schultz, D. H., Hopkins, L. S., & Helmstetter, F. J. (2015). Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI. Social, Cognitive & Affective Neuroscience.
Jarome, T. J., Ferrara, N. C., Kwapis, J. L., & Helmstetter, F. J. (2015). Contextual Information Drives the Reconsolidation-Dependent Updating of Retrieved Fear Memories. Neuropsychopharmacology.
Kwapis, J. L., Jarome, T. J., & Helmstetter, F. J. (2014, December). The role of the medial prefrontal cortex in trace fear extinction. Learning & Memory, 22, 39-46.
Kwapis, J. L., Jarome, T. J., Lee, J. L., Gilmartin, M. R., & Helmstetter, F. J. (2014, September). Extinguishing trace fear engages the retrosplenial cortex rather than the amygdala. Neurobiology of Learning & Memory, 113, 41-54.
Kwapis, J. L., & Helmstetter, F. J. (2014, June). Does PKM Zeta maintain memory? Brain Research Bulletin, 105, 36-45.
Jarome, T. J., & Helmstetter, F. J. (2014, June). Protein degradation and protein synthesis in memory formation. Frontiers in Molecular Neuroscience, 7, 61.
Jarome, T. J., Kwapis, J. L., Hallengren, J. J., Wilson, S. M., & Helmstetter, F. J. (2014, February). The ubiquitin-specific protease 14 (USP14) is a critical regulator of long-term memory formation. Learning & Memory, 21, 758-752.
Balderston, N. L., Schultz, D. H., Balliet, S., & Helmstetter, F. J. (2014). Rapid amygdala responses during trace fear conditioning without awareness. PLoS ONE.
Gilmartin, M. R., Balderston, N. L., & Helmstetter, F. J. (2014). Prefrontal cortical regulation of fear learning. Trends in Neuroscience, 37, 455-464.
Jarome, T. J., Kwapis, J. L., Ruenzel, W. L., & Helmstetter, F. J. (2013, August). CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Frontiers in Behavioral Neuroscience, 7, 115.
Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013, June). Prefrontal activity links nonoverlapping events in memory. Journal of Neuroscience, 33(26), 10910-4.
Balderston, N. L., Schultz, D. H., & Helmstetter, F. J. (2013, May). The effect of threat on novelty evoked amygdala responses. PLoS ONE.
Gafford, G., Parsons, R. G., & Helmstetter, F. J. (2013). Memory accuracy predicts hippocampal and cortical engagement following retrieval of remote fear memory. Hippocampus, 23, 842-847.
Jarome, T. J., & Helmstetter, F. J. (2013). The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiology of Learning and Memory, 105, 107-116.
Schultz, D. H., Balderston, N. L., & Helmstetter, F. J. (2013). Dissociation between implicit and explicit responses in postconditioning UCS revaluation after fear conditioning in humans. Behavioral Neuroscience, 127, 357-368.
Reis, D. S., Jarome, T. J., & Helmstetter, F. J. (2013). Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex. Frontiers in Behavioral Neuroscience, 7, 150.
Kwapis, J. L., Jarome, T. J., Gilmartin, M. R., & Helmstetter, F. J. (2012). Intra-amygdala infusion of the protein kinase Mzeta inhibitor ZIP disrupts context fear memory. Neurobiology of Learning and Memory, 98, 148-153.
Schultz, D. H., Balderston, N. L., & Helmstetter, F. J. (2012). Resting-state connectivity of the amygdala is altered following Pavlovian fear conditioning. Frontiers in Human Neuroscience, Frontiers, 6.
Jarome, T. J., Kwapis, J. L., Parsons, R. G., Gafford, G. M., & Helmstetter, F. J. (2012). The timing of multiple retrieval events can alter GluR1 phosphorylation and the requirement for protein synthesis in fear memory reconsolidation. Learning & Memory, Cold Spring Harbor.
Jarome, T. J., Werner, C. T., Kwapis, J. L., & Helmstetter, F. J. (2011, September). Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the Amygdala. PlosOne, www.plosone.org, 6(9), 12.
Gafford, G. M., Parsons, R. G., & Helmstetter, F. J. (2011, March). Consolidation and reconsolidation of contextual fear memory requires mammalian target of rapamycin-dependent translation in the dorsal hippocampus. Neuroscience, Elsevier, 182, 98-104.
Kwapis, J. L., Jarome, T. J., Schiff, J. C., & Helmstetter, F. J. (2011). Memory consolidation in both trace and delay fear conditioning requires protein synthesis in the amygdala. Learning & Memory, 18, 728-732.