The Qualifying Exam is a college exam given under the authority and responsibility of the Graduate Program Subcommittee (GPSC). The purpose of the examination is to establish the student's readiness to undertake advanced (doctoral level) work in his/her area of study. For students entering with a bachelor's degree, this examination may be taken after 18 credits of graduate work have been earned, but must be taken before 30 credits of graduate work have been completed. Students admitted to Ph.D. program after completion of an appropriate master's degree must take the examination before 12 credits of course work have been earned at UWM.

The examination is composed of two half-day written examination taken on consecutive days. Total time allowed is 4 hours on each of the two days. The first-day examination contains 10 problems in mathematics and fundamentals with the student required to choose 8 problems with at least one from each group. The second-day examination contains 9 problems within the student's area of concentration with the student required to choose 6 problems with at least one from each group. A sample exam will be provided by the department to each candidate as part of exam preparation.

Grading is on the basis of the total examination (both half days) with the student either passing or failing the total examination. In cases where the student has passed the examination, but has exhibited a glaring weakness, recommendations are made in an appropriate manner such as requiring additional courses in the area of weakness.

Day One

Part I - Mathematics and Fundamentals - Closed Book 4 hrs

<table>
<thead>
<tr>
<th>Subject</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary Differential Equations</td>
<td>2</td>
</tr>
<tr>
<td>Partial Differential Equations</td>
<td>2</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Calculus</td>
<td>2</td>
</tr>
<tr>
<td>Numerical Methods</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
</tr>
<tr>
<td>Student Selections</td>
<td>8</td>
</tr>
</tbody>
</table>

A student must select at least one problem from each subject.
Day Two

Part II - Area of Concentration - Open Book 4 hrs

Machine Design Stem

<table>
<thead>
<tr>
<th>Subject</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Design</td>
<td>3</td>
</tr>
<tr>
<td>Kinematics & Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>Controls/Vibration</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9</td>
</tr>
<tr>
<td>Student Selections</td>
<td>6</td>
</tr>
</tbody>
</table>

A student must select at least one problem from each subject.

Thermal Science Stem

<table>
<thead>
<tr>
<th>Subject</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9</td>
</tr>
<tr>
<td>Student Selections</td>
<td>6</td>
</tr>
</tbody>
</table>

A student must select at least one problem from each subject.
PART I: MATHEMATICS AND FUNDAMENTALS

Ordinary Differential Equations

Topics:
- First Order Differential Equations
- Linear Second Order Differential Equations
- Higher Order Differential Equations
- Laplace Transform
- Series Solutions of Differential Equations
- Sturm-Liouville Theory & Eigenfunction Expansions

Course: Math 601: Advanced Engineering Mathematics I

Partial Differential Equations

Topics:
- Solution of Equations (Wave Equation, Heat Equation, Potential, Elastic Membrane, etc.)
- Separation of Variables, Use of Fourier Series
- Laplace Transform
- Error Functions
- Use of Sturm-Liouville Theory & Eigenfunction Expansions

Course: Math 601: Advanced Engineering Mathematics I

Advanced Calculus for Applications, F. B. Hildebrand, Prentice-Hall.

Linear Algebra

Topics:
- Matrices and Determinants
- Solutions to Systems of Linear Equations
- Gauss Elimination Method
- Cayley Hamilton Theorem
- Definiteness of a Matrix
- Ranks
- Euclidean Norm
- Eigenvalues and Eigenvectors
- Jordan Forms
- Repeated Eigenvalues

Course: Math 601: Advanced Engineering Mathematics I

Calculus

Topics:
- Derivatives, Differentiation and Partial Derivatives
- Taylor's Series
- Curvature of a Curve
- Definite and Indefinite Integrals
- Functions of Several Variables
- Line and Surface Integrals
- Green's Theorem

Course: Math 601: Advanced Engineering Mathematics I

Numerical Methods

Topics:
- Eigenvalue problems. Power and inverse power methods.
- Polynomial Approximation and Interpolation. Forward, backward and centered differences. Error analysis.
- Numerical differentiation and integration. Extrapolation techniques, and error analysis.
- One dimensional boundary value problems
- Solutions to Elliptic PDEs
- Solutions to Parabolic PDEs (Von Neumann, Discrete Perturbation Stability Analyses)
- Solutions to Hyperbolic PDEs

Course: ME 715: Numerical Methods in Engineering

Reference: Numerical Methods for Engineers and Scientists, Joe D. Hoffman, McGraw-Hill,
PART II: MACHINE DESIGN STEM

Machine Design

Topics:
- Basic concepts in stress and strain.
- Deflection analysis including statically indeterminate problems
- Design of pressure vessels, buckling of columns.
- Failure theories for steady loads.
- Design to safeguard against fatigue failure
- Design of screws, fasteners and welded joints.
- Design of springs.
- Design of ball/roller bearings and lubrication bearings.
- Gearing Design.
- Shafting design including keyways and flywheels.
- Design of clutches and brakes.

Course: ME 365: Mechanical Design-II

 Fundamental of Machine Elements, B. Hamrock 1999

Kinematics and Dynamics

Topics:
- Degrees of freedom of linkages
- Displacement, velocity and acceleration analysis of linkages
- Design of linkages for three positions- Function, Path and Motion generation
- Static and Dynamic force analysis of linkages
- Cams- layout of cam profile
- Follower motion- simple harmonic, cycloidal, and polynomial profiles
- Gearing and gear trains- basic calculations

Course: ME 360: Mechanical Design-I

Controls/Vibration

Topics:
- Block diagram algebra
- Transient response and s-plane
- Routh-Hurwitz stability criterion
- Root locus method
- Dynamic Compensation of feedback systems
 - System type
 - Steady state errors
- Controllers
 - PI, PID controllers
 - Lead/lag
- Frequency response methods
 - Bode plots
 - Nyquist diagrams
 - Frequency domain lead/lag controllers
- State space formulation
- Basic concepts in vibration and harmonic analysis. Fourier series.
- Free and forced vibrations of single degree of freedom systems.
- Systems response under harmonic, general periodic and non-periodic inputs.
- Free and forced vibrations of multi-degree of freedom systems,
- Vibration isolation and vibration absorbers.
- Modal analysis and decomposition.
- Vibrations of continuous systems such as beams, strings and rods.

Course: ME 474: Introduction to Control Systems
ME 475 Vibrations in Mechanical Design OR
ME 726: Mechanical Vibrations

Reference: *Modern Control Systems*, R.C. Dorf and R.H. Bishop, 8th edn

Theory of Vibrations with Applications, W.T. Thomson, 4th edn
PART II: THERMAL SCIENCE STEM

Thermodynamics

Topics:
- First Law of Thermodynamics (with Applications to Open/Closed Systems, Energy Balance in Steady and Unsteady Systems)
- Second Law of Thermodynamics (with Applications to Open/Closed Systems, Entropy Production Mechanisms in Steady and Unsteady Systems)
- General Thermodynamic Property Relations (Phase Diagrams, Property Tables, Generalized Charts, Equations of State, Maxwell Equations, etc.)
- Homogeneous Non-Reacting Mixtures of Gases and Vapors (Properties of Real and Ideal Gas Mixtures, Psychrometrics, Adiabatic Saturater, etc.)
- Heat Engine Power and Refrigeration Cycles (Analysis of Vapor and Gas power and Refrigeration Cycles such as Rankine, Brayton, Otto, Diesel, etc.)
- Thermodynamics of Combustion (Stoichiometric Equations, Organic Fuel Modeling, Heat of Formation, Heat of Reaction, Chemical Equilibrium and Dissociation, etc.)
- Stability of Thermodynamic Systems (First & Second Order Phase Transitions, Phase Diagrams for Binary Systems, etc.)

Courses: ME 301: Basic Engineering Thermodynamics
 ME 402: Applied Engineering Thermodynamics
 ME 702: Advanced Engineering Thermodynamics

Fundamentals of Engineering Thermodynamics, Moran and Shapiro, John Wiley & Sons

Advanced Thermodynamics for Engineers, Wark, McGraw-Hill.

Advanced Engineering Thermodynamics, A. Bejan, John Wiley & Sons.

Fluid Mechanics

Topics:
- Fluid Statics
- Bernoulli’s and Euler’s Equations
- Control Volume Analysis
- Differential Forms of Conservation Laws
- Solutions of Navier-Stokes Equations
- Dimensional Analysis
- Potential Flow (Stream Function, Velocity Potential,
- Pipe Flow (with Friction Losses, Single and Multiple Pipe Line Systems)
- Boundary Layer Theory
- Flow Over an Immersed Body

Courses:
- ME 320: Introduction to Fluid Mechanics
- ME 721: Advanced Fluid Mechanics

References:
- *Fundamentals of Fluid Mechanics*, Munson, Young, Okiishi, Wiley
- Fluid Mechanics, Cengel and Cimbala, McGraw-Hill
- Fluid Mechanics, F.M. White, McGraw-Hill

Heat Transfer

Topics:
- Conduction (Separation of Variables, Laplace Transformation, Integral Methods)
- Forced Convection (Laminar and Turbulent Heat Transfer in Internal and External Flows)
- Free and Mixed Convection
- Radiation (Blackbody Radiation, Non-Black Surfaces, Electro-magnetic Theory and Radiative Properties of Solids, Radiation Energy Interchange between Black, Gray, Diffuse, and Specular Surfaces, etc.)
- Heat Exchangers

Courses:
- ME 321: Basic Heat Transfer
- ME 711: Conduction Heat Transfer
- ME 712: Convection Heat and Mass Transfer

References: